已知球O與邊長為的正方形ABCD相切于該正方形的中心P點(diǎn),PQ為球O的直徑,若線段QA與球O的球面的交點(diǎn)R恰為線段QA的中點(diǎn),則球O的體積為   
【答案】分析:由題意判斷直角三角形為△QPA等腰直角三角形,求出球的直徑,然后求出半徑,即可求解球的體積.
解答:解:因?yàn)檎叫蜛BCD的邊長為,中心為P,球O與正方形ABCD所在的平面相切于P點(diǎn),
PQ為球O的直徑,所以QP⊥平面ABCD,且O∈QP,線QNA與球O的球面的交點(diǎn)為R,且R恰為線段QA的中點(diǎn),
所以∠PRQ=90°.并且QR=AR,∴△QPA為等腰直角三角形
所以QP=AP=6,球的半徑為3,球O的體積為V=π×33=36π
故答案為:36π
點(diǎn)評:本題考查球的體積的求解,空間幾何體的結(jié)構(gòu)特征,考查空間想象能力,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知球O是棱長為12的正四面體S-ABC的外接球,D,E,F(xiàn)分別是棱SA,SB,SC的中點(diǎn),則平面DEF截球O所得截面的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O與邊長為6
2
的正方形ABCD相切于該正方形的中心P點(diǎn),PQ為球O的直徑,若線段QA與球O的球面的交點(diǎn)R恰為線段QA的中點(diǎn),則球O的體積為
36π
36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知球O與邊長為數(shù)學(xué)公式的正方形ABCD相切于該正方形的中心P點(diǎn),PQ為球O的直徑,若線段QA與球O的球面的交點(diǎn)R恰為線段QA的中點(diǎn),則球O的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年貴州省高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知球O與邊長為的正方形ABCD相切于該正方形的中心P點(diǎn),PQ為球O的直徑,若線段QA與球O的球面的交點(diǎn)R恰為線段QA的中點(diǎn),則球O的體積為   

查看答案和解析>>

同步練習(xí)冊答案