19.已知圓C:x2+y2-2x=0,則圓心C 的坐標(biāo)為(1,0),圓C截直線y=x 的弦長(zhǎng)為$\sqrt{2}$.

分析 將圓C方程化為標(biāo)準(zhǔn)形式,找出圓C的半徑及圓心坐標(biāo)即可;利用點(diǎn)到直線的距離公式,求直線l與圓心C的距離,即可求出圓C截直線y=x 的弦長(zhǎng).

解答 解:圓C方程x2+y2-2x=0化為標(biāo)準(zhǔn)方程得:(x-1)2+y2=1,
則圓C的半徑為1,圓心C坐標(biāo)為(1,0);
圓心C(1,0)到直線l:x-y=0的距離d=$\frac{1}{\sqrt{2}}$,
∴圓C截直線y=x 的弦長(zhǎng)為2$\sqrt{1-\frac{1}{2}}$=$\sqrt{2}$,
故答案為(1,0),$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程與一般方程的轉(zhuǎn)化,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l:x+4y=2與圓C:x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA、OB的傾斜角分別為α、β,則cosα+cosβ=(  )
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.A、B兩個(gè)班共有65名學(xué)生,為調(diào)查他們的引體向上鍛煉情況,通過分層抽樣獲得了部分學(xué)生引體向上的測(cè)試數(shù)據(jù)(單位:個(gè)),用莖葉圖記錄如下:
(I) 試估計(jì)B班的學(xué)生人數(shù);
(II) 從A班和B班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,B班選出的人記為乙,假設(shè)所有學(xué)生的測(cè)試相對(duì)獨(dú)立,比較甲、乙兩人的測(cè)試數(shù)據(jù)得到隨機(jī)變量ξ.規(guī)定:
當(dāng)甲的測(cè)試數(shù)據(jù)比乙的測(cè)試數(shù)據(jù)低時(shí),記ξ=-1,
當(dāng)甲的測(cè)試數(shù)據(jù)與乙的測(cè)試數(shù)據(jù)相等時(shí),記ξ=0,
當(dāng)甲的測(cè)試數(shù)據(jù)比乙的測(cè)試數(shù)據(jù)高時(shí),記ξ=1.
求隨機(jī)變量ξ的分布列及期望.
(III) 再?gòu)腁、B兩個(gè)班中各隨機(jī)抽取一名學(xué)生,他們引體向上的測(cè)試數(shù)據(jù)分別是10,8(單位:個(gè)),這2個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},-1≤x<1\\ lnx,1≤x≤a.\end{array}\right.$
①當(dāng)a=2時(shí),若f(x)=1,則x=0;
②若f(x)的值域?yàn)閇0,2],則a的取值范圍是[$\sqrt{e}$,e2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}-2\overrightarrow$=0,($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=2,則|$\overrightarrow$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.誠(chéng)信是立身之本,道德之基.某校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“
$\frac{周實(shí)際回收水費(fèi)}{周投入成本}$”表示每周“水站誠(chéng)信度”.為了便于數(shù)據(jù)分析,以四周為一個(gè)周期,下表為該水站連續(xù)八周(共兩個(gè)周期)的誠(chéng)信度數(shù)據(jù)統(tǒng)計(jì),如表1:
第一周第二周第三周第四周
第一個(gè)周期95%98%92%88%
第二個(gè)周期94%94%83%80%
(Ⅰ)計(jì)算表1中八周水站誠(chéng)信度的平均數(shù)$\overline{x}$
(Ⅱ)從表1誠(chéng)信度超過91% 的數(shù)據(jù)中,隨機(jī)抽取2個(gè),求至少有1個(gè)數(shù)據(jù)出現(xiàn)在第二個(gè)周期的概率;
(Ⅲ)學(xué)生會(huì)認(rèn)為水站誠(chéng)信度在第二個(gè)周期中的后兩周出現(xiàn)了滑落,為此學(xué)生會(huì)舉行了“以誠(chéng)信為本”主題教育活動(dòng),并得到活動(dòng)之后一個(gè)周期的水站誠(chéng)信度數(shù)據(jù),如表2:
第一周第二周第三周第四周
第三個(gè)周期85%92%95%96%
請(qǐng)根據(jù)提供的數(shù)據(jù),判斷該主題教育活動(dòng)是否有效,并根據(jù)已有數(shù)據(jù)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={-2,0},B={-2,3},則A∪B={-2,0,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=a,(an+1)(an+1+1)=6(Sn+n),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)于?n∈N*,都有Sn≤n(3n+1)成立,求實(shí)數(shù)a取值范圍;
(3)當(dāng)a=2時(shí),將數(shù)列{an}中的部分項(xiàng)按原來的順序構(gòu)成數(shù)列{bn},且b1=a2,證明:存在無數(shù)個(gè)滿足條件的無窮等比數(shù)列{bn}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線2x-y+2=0與直線y=kx+1平行,則實(shí)數(shù)k的值為(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案