分析 (1)由正弦定理化簡(jiǎn)已知的式子,由內(nèi)角和定理、誘導(dǎo)公式、兩角和差的正弦公式化簡(jiǎn)后,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出A;
(2)由(1)和余弦定理列出方程,代入數(shù)據(jù)求出bc的值,由三角形的面積公式求出答案.
解答 解:(1)由acos C+$\sqrt{3}$asin C-b-c=0和正弦定理得,
sin Acos C+$\sqrt{3}$sin Asin C-sin B-sin C=0.
因?yàn)锽=π-A-C,
所以sin Acos C+$\sqrt{3}$sin Asin C-sin(A+C)-sin C=0.
化簡(jiǎn)得,$\sqrt{3}$sin Asin C-cos Asin C-sin C=0,
由于sin C≠0,所以$\sqrt{3}$sin A-cosA=1,
所以$sin(A-\frac{π}{6})=\frac{1}{2}$,
又0<A<π,故A=$\frac{π}{3}$.…(5分)
(2)由(1)和余弦定理得,
a2=b2+c2-2bccosA=(b+c)2-3bc,
因?yàn)閍=7,b+c=11,所以bc=24,
所以△ABC的面積:
$S=\frac{1}{2}bcsinA=\frac{1}{2}×24×\frac{\sqrt{3}}{2}=6\sqrt{3}$…(10分)
點(diǎn)評(píng) 本題考查了正弦定理、余弦定理,三角形的面積公式,以及兩角和差的正弦公式等,注意內(nèi)角的范圍,考查化簡(jiǎn)、變形能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 1或2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n | B. | n2+n | C. | 2n-1 | D. | n2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 內(nèi)切 | B. | 外切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com