已知點P是雙曲線C左支上一點,F1,F2是雙曲線的左、右兩個焦點,且PF1PF2,PF2與兩條漸近線相交于M,N兩點(如圖),點N恰好平分線段PF2,則雙曲線的離心率是(   )

A. B.2 C. D.

A

解析試題分析:在三角形中,點N恰好平分線段PF2,點O恰好平分線段F1F2
∴ON∥PF1,又ON的斜率為,∴tan∠PF1F2= ,
在三角形中,設PF2=bt.PF1=at,
根據(jù)雙曲線的定義可知|PF2|-|PF1|=2a,∴bt-at=2a,①
在直角三角形F1F2P中,|PF2|2+|PF1|2=4c2,∴b2t2+a2t2=4c2,②
由①②消去t,得,又c2=a2+b2,
∴a2=(b-a)2,即b=2a,∴雙曲線的離心率.選A.
考點:雙曲線的簡單性質(zhì).
點評:本題主要考查了雙曲線的簡單性質(zhì),考查了學生對雙曲線定義和基本知識的掌握,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:單選題

橢圓具有 (   )

A.相同的長軸長B.相同的焦點
C.相同的離心率D.相同的頂點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線與雙曲線有相同的焦點F,點A是兩曲線的交點,且|AF|=p,則雙曲線的離心率為( )

A.+1B.+l
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓的離心率為. 雙曲線的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

分別為雙曲線的左右焦點,點P在雙曲線的右支上,且,到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點。設,則等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

的終邊經(jīng)過點A,且點A在拋物線的準線上,則( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設雙曲線的右焦點為,過點作與軸垂直的直線交兩漸近線于A,B兩點,與雙曲線的其中一個交點為,設O為坐標原點,若 (),且,則該雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線C1:,曲線C2,EF是曲線C1的任意一條直徑,P是曲線C2上任一點,則·的最小值為 (   )

A.5B.6C.7D.8

查看答案和解析>>

同步練習冊答案