【題目】已知函數(shù)().
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的極值點(diǎn)個(gè)數(shù).
【答案】(1)(2)當(dāng)時(shí),只有一個(gè)極大值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)
【解析】
(1)將點(diǎn)坐標(biāo)代入函數(shù)解析式,求得參數(shù)的值,代入導(dǎo)函數(shù)即可求得切線的斜率,進(jìn)而求得切線方程.
(2)求得導(dǎo)函數(shù)并化簡(jiǎn)變形,進(jìn)而討論、、三種情況,結(jié)合函數(shù)的單調(diào)性即可確定極值情況.
(1)函數(shù)圖象過(guò)點(diǎn),
代入可得,
∴解得.
代入函數(shù)可得,
則,
所以,
由點(diǎn)斜式可得切線方程為.
所以函數(shù)在點(diǎn)處的切線方程為.
(2)函數(shù)().
則,,
令,.
(。┊(dāng)時(shí),代入可得,
令,解得,
當(dāng),,所以函數(shù)在內(nèi)單調(diào)遞增,
當(dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,
因而只有一個(gè)極大值點(diǎn)
(ⅱ)當(dāng)時(shí),令,
由兩根之積為可知方程只有一個(gè)正根,
當(dāng)時(shí),,所以函數(shù)單調(diào)遞增,
當(dāng)時(shí),,所以函數(shù)單調(diào)遞減,
因而只有一個(gè)極大值點(diǎn)
(ⅲ)當(dāng)時(shí),令,有兩個(gè)正根,
+ | 0 | - | 0 | + | |
增 | 極大值 | 減 | 極小值 | 增 |
綜上可知,當(dāng)時(shí),只有一個(gè)極大值點(diǎn);
當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】京廣高速鐵路(又稱京廣高鐵)是中國(guó)運(yùn)營(yíng)中的高速客運(yùn)專線之一,被譽(yù)為世界上運(yùn)營(yíng)里程最長(zhǎng)的高速鐵路,在出行人群中越來(lái)越受歡迎.現(xiàn)交通部門利用大數(shù)據(jù)工具隨機(jī)抽取了沿線城市出行人群中的名旅客進(jìn)行調(diào)查統(tǒng)計(jì),得知在這名旅客中歲(含)以下采用乘坐京廣高鐵出行的占.
歲(含)以下 | 歲上 | 合計(jì) | |
乘京廣高跌 | |||
不乘京廣高跌 | |||
合計(jì) |
(1)請(qǐng)完成的列聯(lián)表,并由列聯(lián)表中所得數(shù)據(jù)判斷有多大把握認(rèn)為“乘坐京廣高鐵出行與年齡有關(guān)”?
(2)為優(yōu)化服務(wù)質(zhì)量,鐵路部門從這名旅客按年齡采用分層抽樣的方法隨機(jī)抽取人免費(fèi)到廣州參加座談會(huì),會(huì)后再進(jìn)行抽獎(jiǎng)活動(dòng),獎(jiǎng)品共三份.由于年齡差異,規(guī)定歲(含)以下的旅客若中獎(jiǎng)每人得元,歲以上的旅客若中獎(jiǎng)每人得元,這兩個(gè)年齡段的得獎(jiǎng)人數(shù)分別記為與.設(shè)旅客抽獎(jiǎng)所得的總金額為元,求的分布列與數(shù)學(xué)期望.
參考公式: ,參考數(shù)據(jù)如表
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;
(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面,,,,,是的中點(diǎn),平面,.
(1)證明:、、、四點(diǎn)共面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體中,是面對(duì)角線上兩個(gè)不同的動(dòng)點(diǎn).以下四個(gè)命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個(gè)面上的正投影的面積的和為定值.其中為真命題的是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.
年齡 (單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(2)若從年齡在[55,65)的被調(diào)查人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.
參考數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在給出的下列命題中,正確的是( )
A.設(shè)是同一平面上的四個(gè)點(diǎn),若,則點(diǎn)必共線
B.若向量是平面上的兩個(gè)向量,則平面上的任一向量都可以表示為,且表示方法是唯一的
C.已知平面向量滿足則為等腰三角形
D.已知平面向量滿足,且,則是等邊三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com