【題目】在直角坐標系中,直線的參數(shù)方程為,t為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直角坐標系下直線與曲線的普通方程;

2)設(shè)直線與曲線交于點、(二者可重合),交軸于,若,求的值.

【答案】1;(2.

【解析】

1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結(jié)合可將曲線的極坐標方程化為普通方程;

2)將直線的參數(shù)方程代入到曲線的直角坐標方程,由結(jié)合韋達定理求得實數(shù)的值,可判斷出直線與曲線相切,由此可得出的大小.

1)由消去參數(shù)得直線的普通方程為.

,因為,

曲線的直角坐標方程為,即;

2)設(shè)點、的對應(yīng)的參數(shù)分別為、,

將直線的參數(shù)方程代入到曲線的直角坐標方程得①,

,解得.

時,方程①為,,此時直線與曲線相切;

時,方程①為,,此時直線與曲線相切.

因此,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是自然對數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)曲線、處的切線平行,線段的中點為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點處的切線方程為,求,;

2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),且恒成立.

1)求實數(shù)的集合;

2)當時,判斷圖象與圖象的交點個數(shù),并證明.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月,第二屆“一帶一路”國際合作高峰論壇在北京成功舉辦.“一帶一路”是由中國倡議,積極發(fā)展中國與沿線國家經(jīng)濟合作伙伴關(guān)系的區(qū)域合作平臺,共同打造政治互信、經(jīng)濟融合、文化包容的利益、命運和責(zé)任共同體.深受有關(guān)國家的積極響應(yīng).某公司搭乘這班快車,計劃對沿線甲、乙、丙三個國進行投資,其中選擇一國投資兩次,其余兩國各投資一次.共四次投資.每次投資,公司設(shè)置投資金額共有、、、(億元)四個檔次,其中檔投資至多為一次,檔投資至少為一次,檔投資不能在同一國中被投兩次,則不同的投資方案(不考慮投資的先后順序)有(

A.B.C.D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點為,過點軸垂直的直線交拋物線的弦長為2.

1)求拋物線的方程;

2)點和點為兩定點,點和點為拋物線上的兩動點,線段的中點在直線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機抽取了100名學(xué)生進行視力檢查,并得到如圖的頻率分布直方圖.

1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);

2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學(xué)生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?

是否做操

是否近視

不做操

做操

近視

44

32

不近視

6

18

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線與橢圓在第一象限內(nèi)的交點是,且軸,.

1)求橢圓的方程;

2)是否存在斜率為的直線與以線段為直徑的圓相交于,兩點,與橢圓相交于,兩點,且?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案