(2009•棗莊一模)已知兩條直線m,n,兩個平面α,β,給出4個命題:
①若m⊥α,m?β,則β⊥α;
②若α∥β,m∥n,m⊥α,則n⊥β;
③若α∩β=n,且m∥α,m∥β,則m∥n;
④若m∥α,n∥β,m⊥n,則α∥β.
其中正確命題的個數(shù)為( 。
分析:①利用面面垂直的判定定理判斷.②利用線面垂直的判定定理判斷.③利用線面平行的性質判斷.④利用面面平行的判定定理判斷.
解答:解:①根據(jù)面面垂直的判定定理可知①正確.
②因為m∥n,m⊥α,所以n⊥α,又α∥β,所以n⊥β,所以②正確.
③根據(jù)線面平行的性質可知,③正確.
④因為線面平行和線線垂直不能確定直線的位置關系,所以無法證明α∥β,所以④錯誤.
故選C.
點評:本題主要考查空間直線和平面位置關系的判斷.要求熟練掌握相應的性質定理和判定定理的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)已知數(shù)列{an}的各項均是正數(shù),其前n項和為Sn,滿足(p-1)Sn=p2-an,其中p為正常數(shù),且p≠1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
12-logpan
(n∈N*),求數(shù)列{bnbn+1}的前n項和Tn
的取值范圍;
(3)是否存在正整數(shù)M,使得n>M時,a1a4a7…a3n-2>a78恒成立?若存在,求出相應的M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)設(5x-
1
x
)n
的展開式的各項系數(shù)和為M,二項式系數(shù)和為N,若M-N=240,則展開式中x的系數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)先后拋擲兩枚骰子,每次各1枚,求下列事件發(fā)生的概率:
(1)事件A:“出現(xiàn)的點數(shù)之和大于3”;
(2)事件B:“出現(xiàn)的點數(shù)之積是3的倍數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)設復數(shù)z的共軛復數(shù)是
.
z
,若復數(shù)z1=3+4i,z2=t+i,且z1
.
z2
是實數(shù),則實數(shù)t=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)一個幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( 。

查看答案和解析>>

同步練習冊答案