分析 (1)設(shè)等差數(shù)列{an}的公差為d,運用等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,即可得到通項和求和公式;
(2)求得bn=$\frac{1}{{S}_{n}-n}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由數(shù)列的求和方法:裂項相消求和,化簡計算即可得到.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
由a3=7,a5+a7=26,可得a1+2d=7,2a1+10d=26,
解得a1=3,d=2,
即有an=a1+(n-1)d=3+2(n-1)=2n+1,
Sn=na1+$\frac{1}{2}$n(n-1)d=3n+$\frac{1}{2}$n(n-1)•2=n2+2n;
(2)bn=$\frac{1}{{S}_{n}-n}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
前n項和Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點評 本題考查等差數(shù)列的通項公式和求和公式的運用,考查數(shù)列的求和方法:裂項相消求和,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽八中高三上學(xué)期月考二數(shù)學(xué)(文)試卷(解析版) 題型:填空題
函數(shù)在點處的切線的斜率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{3}{4},2]$ | B. | [2,3) | C. | (1,2] | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<b<a | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com