A. | $({-\frac{3}{4},\frac{3}{4}})$ | B. | $({-\frac{4}{3},\frac{4}{3}})$ | C. | $({0,\frac{3}{4}})$ | D. | $({-\frac{3}{4},0})$ |
分析 建立坐標系,設(shè)P(x,y),用x,y表示出$\overrightarrow{AN}•\overrightarrow{MP}$,利用線性規(guī)劃知識求出最值.
解答 解:以C為原點建立平面直角坐標系如圖所示:
則A(0,1),B(1,0),M($\frac{1}{2}$,$\frac{1}{2}$),N($\frac{1}{2}$,0),∴直線AB的方程為x+y=1.
設(shè)P(x,y),則$\overrightarrow{AN}$=($\frac{1}{2}$,-1),$\overrightarrow{MP}$=(x-$\frac{1}{2}$,y-$\frac{1}{2}$),
∴$\overrightarrow{AN}•\overrightarrow{MP}$=$\frac{1}{2}$(x-$\frac{1}{2}$)-(y-$\frac{1}{2}$)=$\frac{1}{2}x$-y+$\frac{1}{4}$,
令z=$\frac{1}{2}x$-y+$\frac{1}{4}$,則y=$\frac{1}{2}$x-z+$\frac{1}{4}$.
∵P(x,y)在△ABC內(nèi)部,
由圖可知當直線y=$\frac{1}{2}$x-z+$\frac{1}{4}$經(jīng)過點A時,截距最大,即z最小,
當直線y=$\frac{1}{2}$x-z+$\frac{1}{4}$經(jīng)過點B時,截距最小,即z最大,
∴zmin=$\frac{1}{2}×0-1+\frac{1}{4}$=-$\frac{3}{4}$,zmax=$\frac{1}{2}×1$-0+$\frac{1}{4}$=$\frac{3}{4}$.
故選A.
點評 本題考查了平面向量的數(shù)量積運算,線性規(guī)劃的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3,4,5} | B. | {0,1,2,3,4} | C. | {1,2,3,4,5} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{5}+\frac{y^2}{2}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{10}+\frac{y^2}{16}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b=0 | B. | x1+x3>2x2 | C. | x1+x3=5 | D. | x12+x22+x32=14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com