{an}為等比數(shù)列,a2+a3=1,a3+a4=-2,則a5+a6+a7=(  )
分析:由題意可得數(shù)列的公比,進而可得首項,代入通項公式可得答案.
解答:解:設(shè)等比數(shù)列{an}的公比為q,
則q=
a3+a4
a2+a3
=-2,
故可得a2+a3=a1q+a1q2=2a1=1,即a1=
1
2

∴a5+a6+a7=a5(1+q+q2)=
1
2
×
(-2)4(1-2+4)=24
故選B
點評:本題考查等比數(shù)列的通項公式,求出數(shù)列的首項和公比是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,且a1=2,a2=4
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{bn}為等差數(shù)列,且b1=a1,a2=b3,求數(shù)列{bn}的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等比數(shù)列,a1=1,a2=3.
(1)求最小的自然數(shù)n,使an≥2007;
(2)求和:T2n=
1
a1
-
2
a2
+
3
a3
-…-
2n
a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}為等比數(shù)列,Tn是其前n項積,且T5是二項式(
x
+
1
x2
)5
展開式的常數(shù)項,則log5a3的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.數(shù)列{bn}滿足bn=logana,設(shè)k,l∈N*bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.
(3)若k+l=M0(M0為常數(shù)),求數(shù)列{an}從第幾項起,后面的項都滿足an>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}為等比數(shù)列a5•a11=3,a3+a13=4,則
a5
a15
=( 。
A、3
B、
1
3
C、3或
1
3
D、-3或-
1
3

查看答案和解析>>

同步練習(xí)冊答案