【題目】甲、乙兩人約定在中午12時到下午1時之間到某站乘公共汽車,又知這段時間內(nèi)有4班公共汽車.設(shè)到站時間分別為12:15,12:30,12:45,1:00.如果他們約定:
①見車就乘;
②最多等一輛.
試分別求出在兩種情況下兩人同乘一輛車的概率.假設(shè)甲乙兩人到達車站的時間是相互獨立的,且每人在中午12點到1點的任意時刻到達車站是等可能的.

【答案】解:①他們乘車總的可能結(jié)果數(shù)為4×4=16種,
乘同一班車的可能結(jié)果數(shù)為4種,
由古典概型知甲乙乘同一班車的概率為P= ;
②設(shè)甲到達時刻為x,乙到達時刻為y,可得0≤x≤60,0≤y≤60,記事件B表示“最多等一輛,且兩人同乘一輛車”,
則:B={(x,y)|0≤x≤15,0≤y≤30;15<x≤30,0≤y≤45;30<x≤45,15≤y≤60;45<x≤60,30<y≤60;},如圖
概率為 ,


【解析】①為古典概型,可得總數(shù)為4×4=16種,符合題意得為4種,代入古典概型得公式可得;②為幾何概型,設(shè)甲到達時刻為x,乙到達時刻為y,可得0≤x≤60,0≤y≤60,作出圖象由幾何概型的公式可得
【考點精析】本題主要考查了幾何概型的相關(guān)知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對的邊,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“北祠堂”是我校著名的一支學生樂隊,對于2015年我!靶@周末文藝廣場”活動中“北祠堂”樂隊的表現(xiàn),在高一年級學生中投票情況的統(tǒng)計結(jié)果見表:

喜愛程度

非常喜歡

一般

不喜歡

人數(shù)

500

200

100

現(xiàn)采用分層抽樣的方法從所有參與對“北祠堂”投票的800名學生中抽取一個容量為n的樣本,若從不喜歡“北祠堂”的100名學生中抽取的人數(shù)是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現(xiàn)將此5人看成一個總體,從中隨機選出2人,列出所有可能的結(jié)果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中, 、分別是棱、的中點,點在棱上,已知, ,

(1)求證: 平面

(2)設(shè)點在棱上,當為何值時,平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點,離心率,短軸長為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,點為橢圓上一動點(非長軸端點),的延長線于橢圓交于點,的延長線于橢圓交于點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)有兩個命題:p:關(guān)于x的不等式x22x4a0對一切xR恒成立;q:已知a0a±1,函數(shù)y=-|a|xR上是減函數(shù),若pq為假命題,pq為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A,D,分別在x軸,y軸正半軸上移動,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,證明:對任意的實數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖所示的三棱柱中,棱底面, , , , , 分別是, , 的中點.

(Ⅰ)求證:

(Ⅱ)求為二面角的余弦值.

查看答案和解析>>

同步練習冊答案