已知ABCD-A′B′C′D′是平行六面體.

(1)化簡++,并在圖形中標(biāo)出其結(jié)果;

(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′的對角線BC′上的點,且BN∶NC′=3∶1,設(shè)=α+β+γ,試求α,β,γ之值.

 

【答案】

(1)先在圖形中標(biāo)出,為此,可取的中點E,則=.

∵=,在D′C′上取點F,使D′F

=D′C′.

∴==.又=,從而有

++=++=,如右圖所示.

(2) =+=+

=+

=+

=++,

∴α=,β=,γ=.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知ABCD,A'B'C'D'都是正方形(如圖),而A'、B'、C'、D'分別把AB、BC、CD、DA分為m:n,設(shè)AB=1.
(1)求A'B'C'D'的面積;
(2)求證A'B'C'D'的面積不小于
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知□ABCD,A(-2,0),B(2,0),且|AD|=2
(1)求□ABCD對角線交點E的軌跡方程.
(2)過A作直線交以A、B為焦點的橢圓于M、N兩點,且|MN|=
8
3
2
,MN的中點到Y(jié)軸的距離為
4
3
,求橢圓的方程.
(3)與E點軌跡相切的直線l交橢圓于P、Q兩點,求|PQ|的最大值及此時l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知ABCD,A'B'C'D'都是正方形(如圖),而A'、B'、C'、D'分別把AB、BC、CD、DA分為m:n,設(shè)AB=1.
(1)求A'B'C'D'的面積;
(2)求證A'B'C'D'的面積不小于數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1962年全國統(tǒng)一高考數(shù)學(xué)試卷(解析版) 題型:解答題

已知ABCD,A'B'C'D'都是正方形(如圖),而A'、B'、C'、D'分別把AB、BC、CD、DA分為m:n,設(shè)AB=1.
(1)求A'B'C'D'的面積;
(2)求證A'B'C'D'的面積不小于

查看答案和解析>>

同步練習(xí)冊答案