A. | (-∞,-e) | B. | (-∞,-1) | C. | (1,+∞) | D. | (e,+∞) |
分析 求出f(-x)的解析式,根據(jù)x的范圍不同得出兩個(gè)不同的方程,由兩個(gè)方程的關(guān)系得出f(-x)=f(x)在(0,+∞)上有兩解,根據(jù)函數(shù)圖象和導(dǎo)數(shù)的幾何意義得出a的范圍.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$,∴f(-x)=$\left\{\begin{array}{l}{-ax,x>0}\\{1,x=0}\\{{e}^{-x},x<0}\end{array}\right.$.
顯然x=0是方程f(-x)=f(x)的一個(gè)根,
當(dāng)x>0時(shí),ex=-ax,①
當(dāng)x<0時(shí),e-x=ax,②
顯然,若x0為方程①的解,則-x0為方程②的解,
即方程①,②含有相同個(gè)數(shù)的解,
∵方程f(-x)=f(x)有五個(gè)不同的根,
∴方程①在(0,+∞)上有兩解,
做出y=ex(x>0)和y=-ax(x>0)的函數(shù)圖象,如圖所示:
設(shè)y=kx與y=ex相切,切點(diǎn)為(x0,y0),
則$\left\{\begin{array}{l}{{e}^{{x}_{0}}=k}\\{k{x}_{0}={e}^{{x}_{0}}}\end{array}\right.$,解得x0=1,k=e.
∵y=ex與y=-ax在(0,+∞)上有兩個(gè)交點(diǎn),
∴-a>e,即a<-e.
故選A.
點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)個(gè)數(shù)與函數(shù)圖象的關(guān)系,導(dǎo)數(shù)的幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $\frac{2}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com