【題目】若集合A={x|﹣2<x<4},B={x|x﹣m<0}.
(1)若m=3,全集U=A∪B,試求A∩(UB);
(2)若A∩B=A,求實數(shù)m的取值范圍.

【答案】
(1)解:集合A={x|﹣2<x<4},B={x|x﹣m<0}.

當m=3時,由x﹣m<0,得x<3,

∴B={x|x<3},

∴U=A∪B={x|x<4},

那么UB={x|3≤x<4}.

∴A∩(UB)={x|3≤x<4}


(2)解:∵A={x|﹣2<x<4},B={x|x<m},

∵A∩B=A,

∴AB,

故:m≥4.

∴實數(shù)m的取值范圍是[4,+∞)


【解析】(1)根據(jù)集合的基本運算求A∪B,即可求(UB)∩A;(2)根據(jù)A∩B=A,建立條件關系即可求實數(shù)m的取值范圍.
【考點精析】利用交、并、補集的混合運算對題目進行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=2sinxcosx﹣1,x∈R的值域是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={1,2,3},B={x∈Z|(x+2)(x﹣3)<0},則A∪B(
A.{1}
B.{﹣1,0,1,2,3}
C.{1,2}
D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為y=x+1,則該直線l的傾斜角為(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“近似替代”中,函數(shù)f(x)在區(qū)間[xi , xi+1]上的近似值(
A.只能是左端點的函數(shù)值f(xi
B.只能是右端點的函數(shù)值f(xi+1
C.可以是該區(qū)間內(nèi)的任一函數(shù)值f(ξi)(ξi∈[xi , xi+1])
D.以上答案均正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|0≤x≤6},集合B={x|x2+2x﹣8≤0},則A∪B=(
A.[0,2]
B.[﹣4,2]
C.[0,6]
D.[﹣4,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式2<log2(x+5)<3的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是(﹣∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當x∈[0,2)時,f(x)=log2(x+1),則f(﹣2010)+f(2011)的值為( 。
A.-2
B.-1
C.1
D.2

查看答案和解析>>

同步練習冊答案