7.某學(xué)校甲、乙兩個(gè)班各派10名同學(xué)參加英語(yǔ)口語(yǔ)比賽,并記錄他們的成績(jī),得到如圖所示的莖葉圖.現(xiàn)擬定在各班中分?jǐn)?shù)超過(guò)本班平均分的同學(xué)為“口語(yǔ)王”.
(1)記甲班“口語(yǔ)王”人數(shù)為m,乙班“口語(yǔ)王”人數(shù)為n,則m,n的大小關(guān)系是m<n.
(2)甲班10名同學(xué)口語(yǔ)成績(jī)的方差為86.8.

分析 (1)由莖葉圖分別求出甲班平均分,乙班平均分,由此能求出甲班“口語(yǔ)王”人數(shù)m和乙班“口語(yǔ)王”人數(shù)n,由此能求出結(jié)果.
(2)利用方差公式能求出甲班10名同學(xué)口語(yǔ)成績(jī)的方差.

解答 解:(1)由莖葉圖知:
甲班平均分$\overline{{x}_{甲}}$=$\frac{1}{10}$(60+72+75+77+80+80+84+88+91+93)=80,
乙班平均分$\overline{{x}_{乙}}$=$\frac{1}{10}$(61+64+70+72+73+85+86+88+94+97)=79,
∵在各班中分?jǐn)?shù)超過(guò)本班平均分的同學(xué)為“口語(yǔ)王”,
∴甲班“口語(yǔ)王”人數(shù)m=4,乙班“口語(yǔ)王”人數(shù)n=5,
∴m<n.
故答案為:m<n.
(2)甲班10名同學(xué)口語(yǔ)成績(jī)的方差為:
S2=$\frac{1}{10}$[(60-80)2+(72-80)2+(75-80)2+(77-80)2+(80-80)2+(80-80)2+(84-80)2+(88-80)2+(91-80)2+(93-80)2]=86.8.
故答案為:86.8.

點(diǎn)評(píng) 本題考查平均數(shù)、方差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意方差計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)是區(qū)間[a,b]上的函數(shù),如果對(duì)任意滿足a≤x<y≤b的x,y都有f(x)≤f(y),則稱f(x)是[a,b]上的升函數(shù),則f(x)是[a,b]上的非升函數(shù)應(yīng)滿足( 。
A.存在滿足x<y的x,y∈[a,b]使得f(x)>f(y)
B.不存在x,y∈[a,b]滿足x<y且f(x)≤f(y)
C.對(duì)任意滿足x<y的x,y∈[a,b]都有f(x)>f(y)
D.存在滿足x<y的x,y∈[a,b]都有f(x)≤f(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=lnx,x∈(1,+∞)的圖象在點(diǎn)(x0,lnx0)處的切線為l,若l與函數(shù)g(x)=$\frac{1}{2}$x2的圖象相切,則x0必滿足( 。
(ln2≈0.6931,ln3≈1.0986)
A.1<x0<$\sqrt{2}$B.$\sqrt{2}$<x0<2C.2<x0<3D.3<x0<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)F(x)=xlnx.
(1)求這個(gè)函數(shù)的圖象在點(diǎn)x=e處的切線方程.
(2)若方程F(x)-t=0在x∈[e-2,1]上有兩個(gè)不相等的實(shí)數(shù)根,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且f(x)滿足:對(duì)任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(4)=0,則關(guān)于x不等式$\frac{f(x)}{x}<0$的解集是( 。
A.(-∞,0)∪(4,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(0,4)D.(0,2)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x3-ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=-1和x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[-2,6]時(shí),f(x)<2|c|恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)命題p:函數(shù)y=ax+2在R上為減函數(shù),命題q:曲線y=x2+ax+1與x軸交于不同的兩點(diǎn).若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=ex+3x(x∈R),則f ( x )( 。
A.有最大值B.有最小值C.是增函數(shù)D.是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)若不等式xf(x)+x2-kx+k>0對(duì)?x∈(2,+∞)恒成立,求實(shí)數(shù)k的最大值;
(3)若數(shù)列{an}的通項(xiàng)公式為${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,試結(jié)合(1)中有關(guān)結(jié)論證明:a1•a2•a3…an<e(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案