ABC的頂點A,B,C到平面的距離依次為ab、c,且點A與邊BC在平面的兩側(cè),則△ABC的重心G到平面的距離為                 (   )
A. B.C. D.
用坐標法,建立空間直角坐標系Oxyz,使坐標平面xOy為平面,且設(shè)點A的豎坐標為a,則點B、C的豎坐標為-b,-c,類比于平面直角坐標系中的三角形重心公式,得重心G的豎坐標為,∴重心G到平面的距離為,故選D
評析:類比既是一種思想,又是一種推理方法.學習立體幾何的知識時,可以與平面幾何的相關(guān)知識進行類比,而平面向量的一些運算法則和性質(zhì),也可以運用類比的方法將其推廣到空間向量中來,學會運用類比的思想方法進行學習和解題,對學好數(shù)學和提高解題能力將是十分有益的.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知是各棱長為5的正三棱柱,,分別是,的中點,則平面與平面的距離為多少

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若空間中有四個點,則“這四個點中有三點在同一直線上”是“這四個點在同一平面上”的                                                     (     )
A.充分非必要條件;B.必要非充分條件;C.充要條件;D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,設(shè)地球半徑為R,點A、B在赤道上,O為地心,點C在北緯30°的緯線(為其圓心)上,且點A、C、D、O共面,點D、O共線.若,則異面直線AB與CD所成角的余弦值為                                           (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

Rt△ABC兩直角邊分別為3、4,PO⊥面ABC,O是△ABC的內(nèi)心,PO=
3
,則點P到△ABC的斜邊AB的距離是( 。
A.
3
B.
2
2
C.
3
2
D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,且PA=1,PB=PC=
2
,則點P到平面ABC的距離為( 。
A.
2
2
B.
2
C.
6
6
D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知空間四邊形中,分別是上的點,且直線交于點,求證三點共線.

查看答案和解析>>

同步練習冊答案