(12分) 甲、乙兩位籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投藍(lán),每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(1)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中得分,求乙所得分?jǐn)?shù)的概率分布和數(shù)學(xué)期望.
解:(1)設(shè)“甲至多命中2個(gè)球”為事件A,“乙至少命中兩個(gè)球”為事件B,由題意得,

∴甲至多命中2個(gè)球且乙至少命中2個(gè)球的概率為                 ———————————————————4分
(2),分布列如下:       5分
P(=-4)=   P(=0)=  P(=4)=
P(=8)=    P(=12)=         8分
10分
                       12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
2011年深圳大運(yùn)會(huì),某運(yùn)動(dòng)項(xiàng)目設(shè)置了難度不同的甲、乙兩個(gè)系列,每個(gè)系列都有K和D
兩個(gè)動(dòng)作,比賽時(shí)每位運(yùn)動(dòng)員自選一個(gè)系列完成,兩個(gè)動(dòng)作得分之和為該運(yùn)動(dòng)員的成績(jī)。假
設(shè)每個(gè)運(yùn)動(dòng)員完成每個(gè)系列中的兩個(gè)動(dòng)作的得分是相互獨(dú)立的,根據(jù)賽前訓(xùn)練統(tǒng)計(jì)數(shù)據(jù),某
運(yùn)動(dòng)員完成甲系列和乙系列的情況如下表:
甲系列:
動(dòng)作
K
D
得分
100
80
40
10
概率




乙系列:
動(dòng)作
K
D
得分
90
50
20
0
概率




   現(xiàn)該運(yùn)動(dòng)員最后一個(gè)出場(chǎng),其之前運(yùn)動(dòng)員的最高得分為118分。
(I)若該運(yùn)動(dòng)員希望獲得該項(xiàng)目的第一名,應(yīng)選擇哪個(gè)系列,說(shuō)明理由,并求其獲得第一
名的概率;
(II)若該運(yùn)動(dòng)員選擇乙系列,求其成績(jī)X的分布列及其數(shù)學(xué)期望EX。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知ξBnp),且Eξ=7,Dξ=6,則p等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
張先生家住H小區(qū),他工作在C科技園區(qū),從家開(kāi)車(chē)到公司上班路上有L1L2兩條路線(xiàn)(如圖),L1路線(xiàn)上有A1,A2A3三個(gè)路口,各路口遇到紅燈的概率均為L2路線(xiàn)上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線(xiàn),求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線(xiàn),求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助張先生分析上述兩條路線(xiàn)中,選擇
哪條上班路線(xiàn)更好些,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共10分)甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約。甲表示只要面試合格就簽約,乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約,設(shè)每人面試合格的概率都是,且面試是否合格互不影響,求:
①至少有1人面試合格的概率;
②簽約人數(shù)ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二項(xiàng)分布滿(mǎn)足X~B(3,),則(X=2)=   ▲   .(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

甲定點(diǎn)投籃命中的概率為,現(xiàn)甲共投5個(gè)球,規(guī)定每投籃一次命中得3分,未命中得-1分,則甲在5次投籃中所得分?jǐn)?shù)的數(shù)學(xué)期望為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為 ,方差為62,則數(shù)據(jù)3x1+5,3x2+5,…,3xn+5的平均數(shù)和方差分別是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

因冰雪災(zāi)害,某柑橘基地果林嚴(yán)重收損,為此有關(guān)專(zhuān)家提出一種拯救果樹(shù)的方案,該方案需分兩年實(shí)施且相互獨(dú)立。該方案預(yù)計(jì)第一年可以使柑橘產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.2、0.4、0.4;第二年可以使柑橘產(chǎn)量為第一年的1.5倍、1.25倍、1.0倍的概率分別是0.3、0.3、0.4,求兩年后柑橘產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案