正項(xiàng)數(shù)列滿足,
(1)若,求的值;
(2)當(dāng)時(shí),證明: ;
(3)設(shè)數(shù)列的前項(xiàng)之積為,若對(duì)任意正整數(shù),總有成立,求的取值范圍
(1)
(2) ;
(3)實(shí)數(shù)的取值范圍是
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150631047390.gif" style="vertical-align:middle;" />所以,解得(舍去)
的任意性知,   ……………3分
(2)反證法:假設(shè)     ……………4分
,則
依此類(lèi)推,這與矛盾。
所以假設(shè)不成立,則           ……………7分
(3)由題知,當(dāng)時(shí),,
所以
同理有
將上述個(gè)式子相乘,得,
 ……………11分
當(dāng)時(shí),也成立,
所以    ……………12分
從而要使對(duì)任意的恒成立,
只要使對(duì)任意的恒成立即可。
因?yàn)閿?shù)列單調(diào)遞增,所以 ……………13分

所以實(shí)數(shù)的取值范圍是      
又a>0, 所以實(shí)數(shù)的取值范圍是………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)數(shù)列
(1)若數(shù)列
(2)求數(shù)列的通項(xiàng)公式
(3)數(shù)列適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)
設(shè)數(shù)列滿足,令.
⑴試判斷數(shù)列是否為等差數(shù)列?并說(shuō)明理由;
⑵若,求項(xiàng)的和
⑶是否存在使得三數(shù)成等比數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
已知數(shù)列
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知等差數(shù)列{an2}中,首項(xiàng)a12=1,公差d=1,an>0,nN*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,數(shù)列{bn}的前n項(xiàng)和為Tn
①求T120;  ②求證:當(dāng)n>3時(shí),   2 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列中,且對(duì)任意均有:
(I)證明數(shù)列是等比數(shù)列;
(II)求數(shù)列的通項(xiàng)公式;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)
設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿足,問(wèn)是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列中的第10項(xiàng)是           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列滿足為常數(shù),),則等于(  )
A.1 B.2 C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案