1.已知數(shù)列{an}滿足an+1=an+2,且a1=2,那么a5=(  )
A.8B.9C.10D.11

分析 利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵an+1=an+2,且a1=2,∴數(shù)列{an}是等差數(shù)列,公差為2,首項(xiàng)為2.
那么a5=2+2×(5-1)=10.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=(m+nx)3=a0+a1x+a2x2+a3x3,mn≠0,則$\frac{{{a_0}{a_3}}}{{{a_1}{a_2}}}$的值為(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=ex-x在區(qū)間[-1,1]上的值域?yàn)椋ā 。?table class="qanwser">A.[1,e-1]B.$[\frac{1}{e}+1,e-1]$C.$[\frac{1}{e}+1,2]$D.[0,e-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若正數(shù)x,y滿足$\frac{1}{x}+\frac{1}{y}$=1,則$\frac{1}{x-1}+\frac{3}{y-1}$的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.第24屆冬奧會(huì)將于2022年在我國(guó)北京和張家口舉行,為了搞好接待工作,組委會(huì)招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男,女志愿者中分別有10人和6人喜愛(ài)運(yùn)動(dòng),其余人不喜愛(ài)運(yùn)動(dòng).
( I)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛(ài)運(yùn)動(dòng)不喜愛(ài)運(yùn)動(dòng)總計(jì)
1016
614
總計(jì)30
( II)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?
( III)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語(yǔ)),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
附:${Χ^2}=\frac{{n({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}}{{{n_{1+}}•{n_{2+}}•{n_{+1}}•{n_{+2}}}}$
獨(dú)立檢驗(yàn)臨界值表:
P(χ2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某公司計(jì)劃從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戌中錄用兩人,若這五人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.長(zhǎng)方形ABCD的長(zhǎng)和寬分別為AB=a,BC=b,且a<b,則繞AB=a旋轉(zhuǎn)一周所得的幾何體體積為V1,繞BC=b旋轉(zhuǎn)一周所得的幾何體體積為V2,則V1與V2的關(guān)系是(  )
A.V1=V2B.V1<V2C.V1>V2D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,一個(gè)摩天輪的半徑為18m,12分鐘旋轉(zhuǎn)一周,它的最低點(diǎn)P0離地面2m,
∠P0OP1=15°,摩天輪上的一個(gè)點(diǎn)P從P1開(kāi)始按逆時(shí)針?lè)较蛐D(zhuǎn),則點(diǎn)P離地
面距離y(m)與時(shí)間x(分鐘)之間的函數(shù)關(guān)系式是( 。
A.$y=-18cos\frac{π}{12}(x+1)+20$B.$y=-18cos\frac{π}{12}(x-1)+20$
C.$y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$D.$y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|的最小值為m.
(1)求m的值;
(2)若正實(shí)數(shù)a,b,c滿足a2+ac+ab+bc=m,求2a+b+c的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案