已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an,n∈N*
(1)判斷{an}是何種數(shù)列,并給出證明;
(2)若a8+a13=m,求b1b2…b20
分析:(1)設(shè)等比數(shù)列{bn}的公比為q,根據(jù)等比數(shù)列的通項(xiàng)公式,可得bn=3an=3a1×qn-1,兩邊取以3為底的對(duì)數(shù),可得數(shù)列{an}的通項(xiàng)公式,從而得到數(shù)列{an}是以log3q為公差的等差數(shù)列.
(2)根據(jù)等差數(shù)列的性質(zhì),得到a1+a20=a8+a13=m,從而得到數(shù)列{an}的前20項(xiàng)的和為10(a1+a20)=10m,再由bn=3an,得到b1b2…b20的值.
解答:解:(1)設(shè)等比數(shù)列{bn}的公比為q,
bn=3an,n∈N*
3an=3a1×qn-1,可得an=a1+(n-1)log3q
∴an+1=a1+nlog3q,an+1-an=log3q(常數(shù)),
∴數(shù)列{an}是以log3q為公差的等差數(shù)列.
(2)∵a8+a13=m,
∴由等差數(shù)列性質(zhì)得a1+a20=a8+a13=m
∴數(shù)列{an}的前20項(xiàng)的和為:a1+a2+…+a20=
(a1+a20)×20
2
 =10m

b1b2b20=3a1+a2+…+a20=310m
點(diǎn)評(píng):本題以指數(shù)、對(duì)數(shù)運(yùn)算為載體,考查了等差數(shù)列的定義與性質(zhì)、等比數(shù)列的通項(xiàng)公式和等差數(shù)列與等比數(shù)列間的關(guān)系等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足2an+1=an+an+2(n=1,2,3,…),它的前n項(xiàng)和為Sn,且a3=5,S6=36.
(1)求an
(2)已知等比數(shù)列{bn}滿足b1+b2=1+a,b4+b5=a3+a4(a≠-1),設(shè)數(shù)列{an•bn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{bn},公比q>0,b3=8,前n項(xiàng)和Tn滿足T3=14,且數(shù)列{an}滿足an+1-2log2bn=0(n∈N*
(1)求{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知等差數(shù)列{an}滿足a3+a6=9,a1a8=8,a1>a8,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)已知等比數(shù)列{bn}滿足b3=2,b2+b4=
203
,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an(n∈N*)判斷{an}是何種數(shù)列,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案