(2013•成都模擬)已知f(x)是R上的奇函數(shù),對(duì)x∈R都有f(x+4)=f(x)+f(2)成立,若f(-1)=-2,則f(2013)等于( 。
分析:在給出的等式f(x+4)=f(x)+f(2)中,取x=-2,可求得f(-2)=0,運(yùn)用奇函數(shù)定義得到f(2)=0,把f(2)=0代回f(x+4)=f(x)+f(2),得到函數(shù)f(x)為以4為周期的周期函數(shù),從而把求f(2013)轉(zhuǎn)化為求f(-1).
解答:解:由f(x+4)=f(x)+f(2),取x=-2,得:f(-2+4)=f(-2)+f(2),即f(-2)=0,所以f(2)=0,
則f(x+4)=f(x)+f(2)=f(x),
所以f(x)是以4為周期的周期函數(shù),
所以f(2013)=f(4×503+1)=f(1)=-f(-1)=-(-2)=2.
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的周期性與奇偶性等性質(zhì),考查了特值思想,涉及給出抽象函數(shù)的等式進(jìn)行求值問(wèn)題,一般需要通過(guò)把等式變形求出函數(shù)的周期,此題為中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足:①f(x)在[m,n]上是單調(diào)函數(shù);②f(x)在[m,n]上的值域?yàn)閇2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有
①③④
①③④
(填上所有正確的序號(hào))
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)某大學(xué)對(duì)1000名學(xué)生的自主招生水平測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),得到樣本頻率分布直方圖(如圖),則這1000名學(xué)生在該次自主招生水平測(cè)試中不低于70分的學(xué)生數(shù)是
600
600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足acosC+
1
2
c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)若實(shí)數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)設(shè)函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,則實(shí)數(shù)α為
-4或2
-4或2

查看答案和解析>>

同步練習(xí)冊(cè)答案