【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調遞減的是
A. B.
C. D.
【答案】C
【解析】主要考查函數(shù)的單調性和奇偶性.
對于A,函數(shù)是偶函數(shù),但在區(qū)間上單調遞增,故不滿足題意;
對于B,函數(shù)是奇函數(shù),在R上單調遞增,故不滿足題意;
對于C,函數(shù)是偶函數(shù),在區(qū)間上單調遞減,故滿足題意;
對于D,函數(shù)是偶函數(shù),但在區(qū)間上有增有減,故不滿足題意.故選C.
【規(guī)律總結】判斷函數(shù)的奇偶性,首先求函數(shù)的定義域,若定義域不關于原點對稱,則函數(shù)不具有奇偶性,此時不必求f(-x).當定義域關于原點對稱時,若證明函數(shù)具有奇偶性,應運用定義,將f(-x)與f(x)進行比較,有時不易變形時,可直接計算f(-x)±f(x),判斷其是否為零;若證明函數(shù)不具有奇偶性,只需找到一組相反量的函數(shù)值,不滿足f(-a)=f(a)和f(-a)=-f(a)即可.
科目:高中數(shù)學 來源: 題型:
【題目】給定兩個命題,命題P:函數(shù)f(x)=(a﹣1)x+3在R上是增函數(shù); 命題q:關于x的方程x2﹣x+a=0有實數(shù)根. 若p∧q為假命題,p∨q為真命題,求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a=2,b= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統(tǒng)計后,結果如下表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題:
①函數(shù)y= + 是偶函數(shù),但不是奇函數(shù);
②方程x2+(a﹣3)x+a=0的有一個正實根,一個負實根,則a<0;
③f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=2x2+x﹣1,則x≥0時,f(x)=﹣2x2+x+1
④函數(shù)y= 的值域是(﹣1, ).
其中正確命題的序號有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段與軸的交點為,且.
(1)求橢圓的標準方程;
(2)圓是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,,當,且滿足時,求的面積的取值范圍.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1: (t為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4.
(1)求出曲線C2的直角坐標方程;
(2)若C1與C2相交于A,B兩點,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在[﹣1,1]的函數(shù)滿足f(﹣x)=﹣f(x),當a,b∈[﹣1,0)時,總有 >0(a≠b),若f(m+1)>f(2m),則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com