在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).
(1)分別求出曲線和直線的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上,且到直線的距離為1,求滿足這樣條件的點(diǎn)的個數(shù).

(1),;(2)3

解析試題分析:(1)由曲線的極坐標(biāo)方程為,兩邊分別乘以,再根據(jù),即可將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.由直線的參數(shù)方程為為參數(shù)),消去參數(shù)t可得直角坐標(biāo)系中的直線方程.
(2)由圓心(2,0)到直線的距離為1.所以恰為圓半徑的,所以圓上共有3個點(diǎn)到直線的距離為1.
(1)由,故曲線的直角坐標(biāo)方程為:,即
;由直線的參數(shù)方程消去參數(shù),
.                        4分
(2)因為圓心到到直線的距離為,恰為圓半徑的,所以圓上共有3個點(diǎn)到直線的距離為1.            7分
考點(diǎn):1.極坐標(biāo)方程.2.參數(shù)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,).若直線l過點(diǎn)P,且傾斜角為,圓C以M為圓心, 4為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的直角坐標(biāo)方程為. 以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. P是曲線上一點(diǎn),,將點(diǎn)P繞點(diǎn)O逆時針旋轉(zhuǎn)角后得到點(diǎn)Q,,點(diǎn)M的軌跡是曲線.
(1)求曲線的極坐標(biāo)方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點(diǎn)P為曲線上的任意一點(diǎn),Q為曲線上的任意一點(diǎn),求線段的最小值,并求此時的P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,求圓ρ=2cosθ的垂直于極軸的兩條切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為(t為參數(shù)),P為C1上的動點(diǎn),Q為線段OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸(兩坐標(biāo)系取相同的長度單位)的極坐標(biāo)系中,N為曲線p=2sinθ上的動點(diǎn),M為C2與x軸的交點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)方程分別為的兩個圓的圓心距為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1和C2的參數(shù)方程分別為(t為參數(shù)),求曲線C1和C2的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案