7.直線$\frac{x}{a}-\frac{y}=1$在y軸上的截距是( 。
A.aB.bC.-aD.-b

分析 令x=0,求出y的值即為直線$\frac{x}{a}-\frac{y}=1$在y軸上的截距.

解答 解:直線$\frac{x}{a}-\frac{y}=1$中,
令x=0,解得y=-b,
∴直線$\frac{x}{a}-\frac{y}=1$在y軸上的截距為-b.
故選:D.

點(diǎn)評(píng) 本題考查直線方程的縱截距的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C的圓心在直線x-3y=0上,且與y軸相切于點(diǎn)(0,1).
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線l:x-y+m=0交于A,B兩點(diǎn),分別連接圓心C與A,B兩點(diǎn),若CA⊥CB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.根據(jù)如圖所示的偽代碼,最后輸出的S的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若a+b=3,則代數(shù)式a3+b3+9ab的值為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a<x<a+1}.
(1)求A∪B,(∁UA)∩B;
(2)如果A∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.能推出{an}是遞增數(shù)列的是( 。
A.{an}是等差數(shù)列且$\left\{{\frac{a_n}{n}}\right\}$遞增
B.Sn是等差數(shù)列{an}的前n項(xiàng)和,且$\left\{{\frac{S_n}{n}}\right\}$遞增
C.{an}是等比數(shù)列,公比為q>1
D.等比數(shù)列{an},公比為0<q<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=log3x+x-3的零點(diǎn)所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等邊△ABC的邊長(zhǎng)為$\sqrt{5}$,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,b=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案