已知f(x)=sinx+cosx,則f′(2013π)+[f(2013π)]′=(  )
分析:根據(jù)已知可得f′(x)=cosx-sinx,可得 f′(2013π)+[f(2013π)]′=( cos2013π-sin2013π)+0,運算求得結果.
解答:解:∵已知f(x)=sinx+cosx,則f′(x)=cosx-sinx,f(2013π)為常數(shù),
∴f′(2013π)+[f(2013π)]′=( cos2013π-sin2013π)+0=(-1-0)-0=-1,
故選A.
點評:本題主要考查導數(shù)的運算,正弦函數(shù)、余弦函數(shù)、常數(shù)函數(shù)的導數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。
A、與g(x)的圖象相同
B、與g(x)的圖象關于y軸對稱
C、向左平移
π
2
個單位,得到g(x)的圖象
D、向右平移
π
2
個單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sinπx.
(1)設g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)設h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時x值的集合.

查看答案和解析>>

同步練習冊答案