(1+2x2)(x-8的展開式中常數(shù)項為    
【答案】分析:將問題轉化成的常數(shù)項及含x-2的項,利用二項展開式的通項公式求出第r+1項,令x的指數(shù)為0,-2求出常數(shù)項及含x-2的項,進而相加可得答案.
解答:解:先求的展開式中常數(shù)項以及含x-2的項;

由8-2r=0得r=4,由8-2r=-2得r=5;
的展開式中常數(shù)項為C84,
含x-2的項為C85(-1)5x-2
的展開式中常數(shù)項為C84-2C85=-42
故答案為-42
點評:本題考查數(shù)學的等價轉化能力及利用二項展開式的通項公式解決二項展開式的特定項問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
(k+1)
2
x2,g(x)=
1
3
-kx且f(x)在區(qū)間(2,+∞)上為增函數(shù).
(1)求k的取值范圍;
(2)若函數(shù)f(x)與g(x)的圖象有三個不同的交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+2x2)(x-
1x
8的展開式中常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式ax2+4x+a>1-2x2對一切x∈R恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)不等式ax2+4x+a>1-2x2對一切x∈R恒成立,求實數(shù)a的取值范圍
(2)已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當x∈(0,+∞)時,f(x)=ax+2lnx,(a∈R),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式ax2+4x+a>1-2x2對一切x∈R恒成立,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習冊答案