已知tanα=
3
4
,求值:
(1)
sin(2π+α)
cos(2π-α)

(2)
sin(π-α)cos(π+α)cos(
3
2
π+α)
cos(3π-α)sin(3π+α)sin(
5
2
π-α)
考點:同角三角函數(shù)基本關系的運用,運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:(1)原式分子分母利用誘導公式化簡,再利用同角三角函數(shù)間基本關系化簡,將tanα的值代入計算即可求出值;
(2)原式利用誘導公式化簡后,再利用同角三角函數(shù)間基本關系化簡,將tanα的值代入計算即可求出值.
解答: 解:(1)∵tanα=
3
4
,
∴原式=
sinα
cosα
=tanα=
3
4
;
(2)∵tanα=
3
4
,
∴原式=
sinα(-cosα)sinα
-cosα(-sinα)cosα
=-tanα=-
3
4
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S的值為( 。
A、0
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結果為2,則輸入的正整數(shù)a的可能取值的集合是(  )
A、{1,2,3,4,5}
B、{1,2,3,4,5,6}
C、{2,3,4,5}
D、{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2+i,z2=a-3i(i為虛數(shù)單位,a∈R).若z1•z2為實數(shù),則a的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),觀察程序框圖,當k=2時,S=
2
3
;當k=3時,S=
3
4

(1)試求數(shù)列{an}的通項;
(2)設若[x]表示不大于x的最大整數(shù)(如[2.10]=2,[0.9]=0),
求T=[log21]+[log22]+[log23]+…+[log2(2 an-1)]+[log2(2 an)]關于n的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的三個內角A,B,C成等差數(shù)列,求證:
c
a+b
+
a
b+c
=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=a且an+1+(-1)nan=2n-1(其中a為常數(shù)),Sn是數(shù)列{an}的前n項和,數(shù)列{bn}滿足bn=a2n
(1)求a1+a3的值;
(2)試判斷{bn}是否為等差數(shù)列,并說明理由;
(3)求Sn(用a表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算(
1-i
1+i
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|y=ln(x-2)+
3x-3
,x∈R},N={x||x-1|-|4-x|<a,x∈R},若M∩N≠∅,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案