已知定義在
上的奇函數(shù)
,若
的導(dǎo)函數(shù)
滿足
則不等式
的解集為( )
試題分析:令
,因為
所以
,所以
單調(diào)遞減,因為函數(shù)
是定義在
上的奇函數(shù),所以有
,所以該不等式轉(zhuǎn)化為
,根據(jù)函數(shù)的單調(diào)性可知原不等式的解集為
.
點評:解決本題的關(guān)鍵是構(gòu)造新函數(shù)解不等式,解題時注意轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
(其中
).
(1)求
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時,若存在
,對任意的
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)要使
在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)若
時,
圖象上任意一點處的切線的傾斜角為
,試求當(dāng)
時,a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,若存在
使得
恒成立,則稱
是
的
一個“下界函數(shù)” .
(I)如果函數(shù)
(t為實數(shù))為
的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù)
,試問函數(shù)
是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的最小值為0,其中
。
(1)求a的值
(2)若對任意的
,有
成立,求實數(shù)k的最小值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)曲線
(
)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為
,則
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
,則
a的值為。ā )
A.1 | B. | C.-1 | D.0 |
查看答案和解析>>