已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
(1) (2) (3)
【解析】
試題分析:(1)由題意:在上恒成立,即
在上恒成立,
只需sin
(2) 由(1),得f(x)-g(x)=-,,由于f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),則在上恒成立,即在上恒成立,故,綜上,m的取值范圍是
(3)構(gòu)造函數(shù)F(x)=f(x)-g(x)-h(x),,
當(dāng)由得,,所以在上不存在一個,使得;
當(dāng)m>0時(shí),,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041119042328122104/SYS201304111905109375841167_DA.files/image016.png">,所以在上恒成立,故F(x)在上單調(diào)遞增,,故m的取值范圍是
另法:(3) 令
考點(diǎn):導(dǎo)數(shù)的運(yùn)算性質(zhì),恒成立問題,構(gòu)造函數(shù)思想。
點(diǎn)評:本題綜合運(yùn)用導(dǎo)數(shù)性質(zhì),恒成立思想,構(gòu)造函數(shù)思想綜合求出的范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011—2012學(xué)年度湖北省天門中學(xué)高三上學(xué)期期中理科數(shù)學(xué)考試試卷 題型:解答題
已知函數(shù)在上為增函數(shù),其中,
(1)求的取值集合;
(2),若在上為單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江哈爾濱第十二中學(xué)高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)在上為增函數(shù),則實(shí)數(shù)a的取值范圍為___________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度江西南昌二中高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
本題14分)已知函數(shù)在上為增函數(shù),且
(1)求θ的值;
(2)若在[1,+)上為單調(diào)函數(shù),求m的取值范圍;
(3)設(shè),若在[1,e]上至少存在一個x0,使得成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市四校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分15分)已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(Ⅰ)求的值;
(Ⅱ)若在上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設(shè),若在上至少存在一個,使得成立,求的m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:解答題
已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com