已知A、B是橢圓
x2
a2
+
25y2
9a2
=1
上的兩點,F(xiàn)2是橢圓的右焦點,如果|AF2|+|BF2|=
8
5
a
,AB的中點到橢圓左準線距離為
3
2
,則橢圓的方程
 
分析:由橢圓的第一定義求出|AF1|+|BF1|,利用橢圓的第二定義及梯形中位線的性質(zhì)求出a的值,從而得到橢圓方程.
解答:解:∵|AF2|+|BF2|=
8
5
a
,∴2a-|AF1|+2a-|BF1|=
8
5
a
,∴|AF1|+|BF1|=
12
5
a,
記AB的中點為M,A、B、M在橢圓左準線上的射影分別為A1、B1,M1,
由橢圓第二定義知:|AF1|=e|AA1|,|BF1|=e|BB1|,于是有:e(|AA1|+|BB1|)=
12
5
a
,
而e=
4
5
,∴|AA1|+|BB1|=3a,∴2|MM1|=3a,又|MM1|=
3
2
,∴a=1,故橢圓方程為 x2+
25y2
9
=1

故答案為 x2+
25y2
9
=1
點評:本題考查橢圓的第一定義、第二定義,橢圓的標準方程,以及梯形的中位線的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、B是圓x2+y2=4上滿足條件
OA
OB
的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
A1P
+2
PB1
=
0

(I)求動點P的軌跡方程
(II)設S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年吉林省高考復習質(zhì)量檢測數(shù)學試卷(理科)(解析版) 題型:解答題

已知A、B是圓x2+y2=4上滿足條件的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
(I)求動點P的軌跡方程
(II)設S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省九校高三聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知A、B是圓x2+y2=4上滿足條件的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
(I)求動點P的軌跡方程
(II)設S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年吉林省高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

已知A、B是圓x2+y2=4上滿足條件的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
(I)求動點P的軌跡方程
(II)設S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:吉林省模擬題 題型:解答題

已知A,B是圓x2+y2=4上滿足條件的兩個點,其中O是坐標原點,分別過A,B作x軸的垂線段,交橢圓x2+4y2=4于A1,B1點,動點P滿足
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值。

查看答案和解析>>

同步練習冊答案