17.已知點A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,過點A的直線與C在第一象限相切于點B,記C的焦點為F,則|BF|=10.

分析 由題意先求出準(zhǔn)線方程x=-2,再求出p,從而得到拋物線方程,寫出第一象限的拋物線方程,設(shè)出切點,并求導(dǎo),得到切線AB的斜率,再由兩點的斜率公式得到方程,解出方程求出切點,再由兩點的距離公式可求得.

解答 解:∵點A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,
即準(zhǔn)線方程為:x=-2,
∴p>0,-$\frac{p}{2}$=-2即p=4,
∴拋物線C:y2=8x,在第一象限的方程為y=2$\sqrt{2x}$,
設(shè)切點B(m,n),則n=2$\sqrt{2m}$,
又導(dǎo)數(shù)y′=2$\sqrt{2}•\frac{1}{2}•\frac{1}{\sqrt{x}}$,則在切點處的斜率為$\frac{\sqrt{2}}{\sqrt{m}}$,
∴$\frac{n-3}{m+2}$=$\frac{\sqrt{2}}{\sqrt{m}}$,即$\sqrt{m}$m+2$\sqrt{2}$=2$\sqrt{2}$-3$\sqrt{m}$,
解得:$\sqrt{m}$=2$\sqrt{2}$或($\frac{\sqrt{2}}{2}$舍去),
∴切點B(8,8),又F(2,0),
∴|BF|=$\sqrt{36+64}$=10.
故答案為:10.

點評 本題主要考查拋物線的方程和性質(zhì),同時考查直線與拋物線相切,運用導(dǎo)數(shù)求切線的斜率等,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某人到甲、乙兩市各7個小區(qū)調(diào)查空置房情況,調(diào)查得到的小區(qū)空置房的套數(shù)繪成了如圖的莖葉圖,則調(diào)查中甲市空置房套數(shù)的中位數(shù)與乙市空置房套數(shù)的中位數(shù)之差為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線a⊥平面α,則“直線b∥平面α”是“直線a⊥直線b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a∈R,函數(shù)f(x)=aex-x-1,g(x)=x-ln(x+1)(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)極值點的個數(shù);
(Ⅱ)若a=1,且命題“?x∈[0,+∞),f(x)≥kg(x)”是假命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^{x+1}},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$則不等式f(x)>1的解集為$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程e2x+aex+1=0有解,則實數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在四棱錐P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PB=PC=2,求點P到面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)i是虛數(shù)單位,復(fù)數(shù)$z=\frac{{2{i^3}}}{1-i}$,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,則$\sqrt{2}cos(2α+\frac{π}{4})$=( 。
A.$\frac{7}{25}$B.$\frac{17}{25}$C.-$\frac{17}{25}$D.$\frac{31}{25}$

查看答案和解析>>

同步練習(xí)冊答案