設(shè)集合A={1,2,3,4},m,n∈A,則方程表示焦點在x軸上的橢圓有    個
6
此題考查橢圓的焦點
表示焦點在x軸上的橢圓,則,當(dāng)時,。當(dāng)時,。
當(dāng)時,。所以一共6個。
答案 6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓)和橢圓
的焦點相同且.給出如下四個結(jié)論:
橢圓和橢圓一定沒有公共點;          ②
;                  ④.
其中,所有正確結(jié)論的序號是
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線與橢圓相交于兩點,分別過軸作垂線,若垂足恰為橢圓的兩個焦點,則等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
函數(shù)定義在區(qū)間[a, b]上,設(shè)“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設(shè),
,
若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)
為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;
(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
設(shè)橢圓,
已知
(Ⅰ) 求橢圓E的方程;
(Ⅱ)已知過點M(1,0)的直線交橢圓EC,D兩點,若存在動點N,使得直線NC,NM,ND的斜率依次成等差數(shù)列,試確定點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓,焦點為,橢圓上的點滿,則的面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓(a>b>0)的左、右焦點分別為,短軸兩個端點為.A、B且四邊形是邊長為2的正方形.

(I)求橢圓的方程;
(II)若C、D分別是橢圓長軸的左、右端點,動點M滿足MD丄CD,連結(jié)CM,交橢圓于點P.證明為定值;
(III)在(II)的條件下,試問X軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP,MQ的交點.若存在,求出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:的左、右焦點分別為F1 ,F2,若橢圓上總存在點P,使得點P在以F1,F2為直徑的圓上.
(1) 求橢圓離心率的取值范圍;
(2) 若AB是橢圓C的任意一條不垂直x軸的弦,M為弦的中點,且滿足
(其中分別表示直線AB、OM的斜率,0為坐標(biāo)原點),求滿足題意的橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案