橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)的距離分別為d1,d2,焦距為2c,若d1,2c,d2成等差數(shù)列,則橢圓的離心率為(  )
A.
1
2
B.
2
2
C.
3
2
D.
3
4
∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)的距離分別為d1,d2,
∴由橢圓的定義知:d1+d2=2a,
∵焦距為2c,且d1,2c,d2成等差數(shù)列,
∴d1+d2=4c,
∴2a=4c,即a=2c,
∴e=
c
a
=
1
2

故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個焦點(diǎn)的橢圓.設(shè)地球半徑為R,衛(wèi)星近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別是r1,r2,則衛(wèi)星軌道的離心率=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
9
=1
上的一點(diǎn),B1,B2分別為橢圓的上、下頂點(diǎn),若△PB1B2的面積為6,則滿足條件的點(diǎn)P的個數(shù)為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由半橢圓
x2
a2
+
y2
b2
=1
(x≥0)與半橢圓
x2
b2
+
y2
c2
=1
(x≤0)合成的曲線稱作“果圓”,如圖所示,其中a2=b2+c2,a>b>c>0.由右橢圓
x2
a2
+
y2
b2
=1
(x≥0)的焦點(diǎn)F0和左橢圓
x2
b2
+
y2
c2
=1
(x≤0)的焦點(diǎn)F1,F(xiàn)2確定的△F0F1F2叫做果圓的焦點(diǎn)三角形,若果圓的焦點(diǎn)三角形為銳角三角形,則右橢圓
x2
a2
+
y2
b2
=1
(x≥0)的離心率的取值范圍為(  )
A.(
1
3
,1)
B.(
2
3
,1)
C.(
3
3
,1)
D.(0,
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點(diǎn),則點(diǎn)P到x軸的距離為( 。
A.
1
2
B.
3
3
C.
1
2
3
3
D.以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

P為橢圓
x2
25
+
y2
16
=1上一點(diǎn),M.N分別是圓(x+3)2+y2=4和(x-3)2+y2=1上的點(diǎn),則|PM|+|PN|的取值范圍是( 。
A.[7,13]B.[10,15]C.[10,13]D.[7,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓上任意一點(diǎn)與焦點(diǎn)所連接的線段為直徑的圓與以長軸為直徑的圓的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時,坐標(biāo)原點(diǎn)O到l的距離為
2
2
,
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
16
+
y2
9
=1
的左、右焦點(diǎn)為F1、F2,一直線過F1交橢圓于A、B,則△ABF2的周長為( 。
A.8B.14C.16D.20

查看答案和解析>>

同步練習(xí)冊答案