【題目】如圖,扇形的半徑為,圓心角,點為弧上一點,平面,點∥平面

(1)求證:平面平面;

(2)求平面和平面所成二面角的正弦值的大小.

【答案】(1)見證明;(2)

【解析】

1)如圖,連接于點,連接,結(jié)合∥平面,得到,從而求得,根據(jù)余弦定理得,得到,得到,因為平面,所以,得到平面,再利用面面垂直的判定定理證得平面平面;

2)由(1)的條件,得到,建立空間直角坐標系,得到點的坐標,求得面的法向量,用法向量所成角的余弦值得到二面角的余弦值,再應(yīng)用同角三角函數(shù)關(guān)系式求得其正弦值,得到答案.

(1)如圖,連接于點,連接

∥平面,,,,

,,

中,根據(jù)余弦定理得

,,,

平面,平面,

平面平面平面

(2)由(1)得,如圖建立空間直角坐標系,

,,,,

,,,

設(shè)平面的法向量為,則,即,

,得

設(shè)平面的法向量為,則,即,即,令,得,,,

設(shè)平面和平面所成二面角的大小為

,

∴平面和平面所成二面角的正弦值的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的棱長為1,線段上有兩個動點.,且,則下列結(jié)論中錯誤的是(

A.;

B.三棱錐體積是定值;

C.二面角的平面角大小是定值;

D.與平面所成角等于與平面所成角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“辛卜生公式”給出了求幾何體體積的一種計算方法:夾在兩個平行平面之間的幾何體,如果被平行于這兩個平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項式函數(shù),那么這個幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個幾何體.利用辛卜生公式可求得該幾何體的體積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若恒成立,求的取值集合;

(2)在函數(shù)的圖像上取定點,記直線AB的斜率為K,證明:存在,使恒成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面平面,點為線段的中點,點是線段上的一個動點.

(Ⅰ)求證:平面平面;

(Ⅱ)當點是線段上的中點時,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2),若函數(shù)的圖象有且僅有一個交點,的值(其中表示不超過的最大整數(shù),.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正整數(shù)數(shù)列滿足p,q為常數(shù)),其中為數(shù)列的前n項和.

(1),,求證:是等差數(shù)列;

(2)若數(shù)列為等差數(shù)列,求p的值;

(3)證明:的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有限個元素組成的集合為,,集合中的元素個數(shù)記為,定義,集合的個數(shù)記為,當,稱集合具有性質(zhì).

(1)設(shè)集合具有性質(zhì),判斷集合中的三個元素是否能組成等差數(shù)列,請說明理由;

(2) 設(shè)正數(shù)列的前項和為,滿足,其中,數(shù)列中的前項:組成的集合記作,將集合中的所有元素從小到大排序,即滿足,求

(3) 己知集合,其中數(shù)列是等比數(shù)列,,且公比是有理數(shù),判斷集合是否具有性質(zhì),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率e滿足,右頂點為A,上頂點為B,點C(0,-2),過點C作一條與y軸不重合的直線l,直線l交橢圓EP,Q兩點,直線BPBQ分別交x軸于點M,N;當直線l經(jīng)過點A時,l的斜率為

(1)求橢圓E的方程;

(2)證明:為定值.

查看答案和解析>>

同步練習(xí)冊答案