分析 (1)設(shè)圓C的方程為:(x-a)2+(y-b)2=r2,
根據(jù)題意,有$\left\{\begin{array}{l}{^{2}+5={r}^{2}…①}\\{{a}^{2}+8={r}^{2}…②}\\{3a+b-1=0…③}\\{a>0,b<0}\end{array}\right.$
由①②③得a=1,⇒b=1-3a=-2,r2=9,即可得圓的方程;
(2)在圓C的方程:(x-1)2+(y+2)2=9中令y=0,得A(1-$\sqrt{5}$,0),B(1+$\sqrt{5},0$),N(1,0).
將x-1)2+(y+2)2<9.(x-1)2-y2=$\frac{5}{2}$代入$\overrightarrow{PA}$$•\overrightarrow{PB}$=(1-$\sqrt{5}$-x,-y)(1+$\sqrt{5}$-x,-y)=(x-1)2+y2-5即可求解.
解答 解:(1)設(shè)圓C的方程為:(x-a)2+(y-b)2=r2,
根據(jù)題意,有$\left\{\begin{array}{l}{^{2}+5={r}^{2}…①}\\{{a}^{2}+8={r}^{2}…②}\\{3a+b-1=0…③}\\{a>0,b<0}\end{array}\right.$
①-②得b2=a2+3,…④
由③④得4a2-3a-1=0,∵a>0,解得a=1,⇒b=1-3a=-2,r2=9,
∴圓C的方程為:(x-1)2+(y+2)2=9,
(2)在圓C的方程:(x-1)2+(y+2)2=9中令y=0,
得A(1-$\sqrt{5}$,0),B(1+$\sqrt{5},0$),∴N(1,0).
∵動(dòng)點(diǎn)P(x,y)在圓C內(nèi),∴(x-1)2+(y+2)2<9…①
將①代入(x-1)2-y2=$\frac{5}{2}$得-$\frac{5}{2}$$<y<\frac{1}{2}$,0$≤{y}^{2}<\frac{25}{4}$
$\overrightarrow{PA}$$•\overrightarrow{PB}$=(1-$\sqrt{5}$-x,-y)(1+$\sqrt{5}$-x,-y)=(x-1)2+y2-5…②
將(x-1)2-y2=$\frac{5}{2}$代入②得$\overrightarrow{PA}$$•\overrightarrow{PB}$=2y2-$\frac{5}{2}$$∈[-\frac{5}{2},10]$.
點(diǎn)評(píng) 本題考查圓的方程,與圓有關(guān)的最值問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{1}{3}$ | C. | $\frac{7}{10}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 0 | C. | -$\frac{1}{2}$或0 | D. | -2或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 114 | B. | 117 | C. | 111 | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com