f(x)在R上是奇函數(shù),f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(7)=( 。
分析:由f(x+2)=-f(x).得到函數(shù)的周期是4,然后利用周期性和奇偶性進(jìn)行求值即可.
解答:解:由f(x+2)=-f(x),得f(x+4)=f(x),所以函數(shù)f(x)的周期是4.
所以f(7)=f(-1),
因?yàn)楹瘮?shù)為奇函數(shù),所以f(-1)=-f(1)=-2,
所以f(7)=-2.
故選A.
點(diǎn)評(píng):本題主要考查函數(shù)周期性和奇偶性的應(yīng)用,考查函數(shù)的綜合性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=
2a-1a+1
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)對(duì)于任意x∈R,存在M使不等式|f(x)|≤M|x|恒成立(其中M是與x無(wú)關(guān)的正常數(shù)),則稱函數(shù)f(x)為有界泛函,給出下列函數(shù):
①f1(x)=1;
f2(x)=x2
f4(x)=
xx2+x+1
;
④f(x)是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)x1,x2均有|f1(x)-f2(x)|≤2|x1-x2|,其中屬于有界泛函的是
③④
③④
(填上正確序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如果函數(shù)f(x)對(duì)于任意x∈R,存在M使不等式|f(x)|≤M|x|恒成立(其中M是與x無(wú)關(guān)的正常數(shù)),則稱函數(shù)f(x)為有界泛函,給出下列函數(shù):
①f1(x)=1;
數(shù)學(xué)公式;
數(shù)學(xué)公式;
④f(x)是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)x1,x2均有|f1(x)-f2(x)|≤2|x1-x2|,其中屬于有界泛函的是________(填上正確序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省莆田市仙游一中高一(上)第三次檢測(cè)數(shù)學(xué)試卷(1-6班)(解析版) 題型:填空題

如果函數(shù)f(x)對(duì)于任意x∈R,存在M使不等式|f(x)|≤M|x|恒成立(其中M是與x無(wú)關(guān)的正常數(shù)),則稱函數(shù)f(x)為有界泛函,給出下列函數(shù):
①f1(x)=1;
;

④f(x)是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)x1,x2均有|f1(x)-f2(x)|≤2|x1-x2|,其中屬于有界泛函的是    (填上正確序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案