(2012•臨沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是
1
64
,則a的值為( 。
分析:根據(jù)題意,易得區(qū)域Ω的面積,由定積分公式,計(jì)算可得區(qū)域A的面積,又由題意,結(jié)合幾何概型公式,可得
1
4
a4
1
=
1
64
,解可得答案.
解答:解:根據(jù)題意,區(qū)域Ω即邊長為1的正方形的面積為1×1=1,
區(qū)域A即曲邊三角形的面積為∫0ax3dx=
1
4
x4|0a=
1
4
a4
若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是
1
64

則有
1
4
a4
1
=
1
64
,
解可得,a=
1
2
,
故選D.
點(diǎn)評(píng):本題考查幾何概型的計(jì)算,涉及定積分的計(jì)算,關(guān)鍵是用a表示出區(qū)域A的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)在圓x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段,D為垂足,點(diǎn)M在線段PD上,且|DP|=
2
|DM|,點(diǎn)P在圓上運(yùn)動(dòng).
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)過定點(diǎn)C(-1,0)的直線與點(diǎn)M的軌跡交于A、B兩點(diǎn),在x軸上是否存在點(diǎn)N,使
NA
NB
為常數(shù),若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)若某程序框圖如圖所示,則輸出的p的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)已知命題p:?x∈[1,2],x2-a≥0,命題q:?x∈R.x2+2ax+2-a=0,若“p且q”為真命題,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案