已知過拋物線
的焦點
且斜率為
的直線與拋物線交于
兩點,且
,則
.
試題分析:由題意知,直線的方程為y=
(x-
),與拋物線C:
聯(lián)立
得3x
2-5px+
=0,∴交點的橫坐標為x=
或x=
,
∵|FA|>|FB|,根據(jù)拋物線的定義得|FA|=2p,|FB|=
,∴
=3.
點評:中檔題,涉及直線與拋物線的位置關(guān)系,一般通過聯(lián)立方程組,尋求解題所需條件。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)拋物線
的焦點為
,經(jīng)過點
的動直線
交拋物線
于點
,
且
.
(1)求拋物線
的方程;
(2)若
(
為坐標原點),且點
在拋物線
上,求直線
傾斜角;
(3)若點
是拋物線
的準線上的一點,直線
的斜率分別為
.求證:
當
為定值時,
也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.
(Ⅰ)求證:
,
,
三點的橫坐標成等差數(shù)列;
(Ⅱ)設(shè)直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的離心率為
.雙曲線
的漸近線與橢圓
有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓
的方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的長軸長為
,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得|
=3|
.
(1)求橢圓的標準方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
從雙曲線
的左焦點
引圓
的切線,切點為
,延長
交雙曲線右支于
點,若
為線段
的中點,
為坐標原點,則
與
的大小關(guān)系為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是雙曲線
的左、右焦點,過
且垂直于
軸的直線與雙曲線交于
兩點,若△
是銳角三角形,則該雙曲線離心率的取值范圍是( )
查看答案和解析>>