某電子科技公司開發(fā)一種新產(chǎn)品,公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標(biāo)分別為4、10、12,點A、B的縱坐標(biāo)分別為﹣16、20.
(1)試確定函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內(nèi)所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?
解答: 解:(1)根據(jù)題意可設(shè):y=a(x﹣4)2﹣16,
當(dāng)x=10時,y=20,
所以a(10﹣4)2﹣16=20,解得a=1,
所求函數(shù)關(guān)系式為:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)
(2)當(dāng)x=9時,y=(9﹣4)2﹣16=9,所以前9個月公司累計獲得的利潤為9萬元,
又由題意可知,當(dāng)x=10時,y=20,而20﹣9=11,
所以10月份一個月內(nèi)所獲得的利潤11萬元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
(3)設(shè)在前12個月中,第n個月該公司一個月內(nèi)所獲得的利潤為s(萬元)
則有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,
因為s是關(guān)于n的一次函數(shù),且2>0,s隨著n的增大而增大,
而n的最大值為12,所以當(dāng)n=12時,s=15,
所以第12月份該公司一個月內(nèi)所獲得的利潤最多,最多利潤是15萬元.﹣﹣(4分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com