已知a>0,b>0,且3是a與2b的等差中項,則
1
ab
的最小值為
 
考點:基本不等式,等差數(shù)列
專題:不等式的解法及應(yīng)用
分析:3是a與2b的等差中項,可得a+2b=6,利用基本不等式的性質(zhì)即可得出.
解答: 解:∵3是a與2b的等差中項,
∴a+2b=6,
6≥2
2ab

ab≤
9
2
,即
1
ab
2
9
,
1
ab
的最小值為
2
9

故答案為:
2
9
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B滿足tan(A+B)=3tanA,則tanB取到最大值時角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(
2
-1)0+(
16
9
 -
1
2
+(
8
 -
4
3
;   
(2)lg25+2lg2-log32•log23+2 log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知q是等比數(shù)列{an}的公比,則“q<1”是“數(shù)列{an}是遞減數(shù)列”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若U={1,2,3,4,5},A={1,2,3},B={2,4},則A∩∁UB(  )
A、{2,4}
B、{1,3}
C、{1,2,3,4}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={x|x>0},集合A={x∈U|1-
1
x
≥0},則集合CUA=(  )
A、x|x≥1}
B、x|x≥1}
C、{x|x≥1}
D、{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=3+4i7,則|z|=( 。
A、
7
B、1
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
1+i
等于(  )
A、iB、1+i
C、1-iD、2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<…設(shè)集合Am={n|an≤m,m∈N*},將集合Am中的元素的最大值記為bm.換句話說,bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)請寫出數(shù)列1,4,7的伴隨數(shù)列;
(2)設(shè)an=3n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前20之和;
(3)若數(shù)列{an}的前n項和Sn=n2+c(其中c常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項和Tm

查看答案和解析>>

同步練習(xí)冊答案