設(shè)定函數(shù)f(x)=
a3
x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的兩個(gè)根分別為1,4.
(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點(diǎn)時(shí),求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)無極值點(diǎn),求a的取值范圍.
分析:先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后代入f′(x)-9x=0中,再由方程有兩根1、4可得兩等式;
(1)將a的值代入即可求出b,c的值,再由f(0)=0可求d的值,進(jìn)而確定函數(shù)解析式.
(2)f(x)在(-∞,+∞)無極值點(diǎn)即函數(shù)f(x)是單調(diào)函數(shù),且可判斷是單調(diào)增函數(shù),再由導(dǎo)函數(shù)大于等于0在R上恒成立可解.
解答:解:由得f′(x)=ax2+2bx+c
因?yàn)閒′(x)-9x=ax2+2bx+c-9x=0的兩個(gè)根分別為1,4,所以
a+2b+c-9=0
16a+8b+c-36=0
(*)
(Ⅰ)當(dāng)a=3時(shí),又由(*)式得
2b+c-6=0
8b+c+12=0

解得b=-3,c=12
又因?yàn)榍y=f(x)過原點(diǎn),所以d=0
故f(x)=x3-3x2+12x
(Ⅱ)由于a>0,所以“f(x)=
a
3
x3+bx2+cx+d
在(-∞,+∞)內(nèi)無極值點(diǎn)”等價(jià)于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)內(nèi)恒成立”.
由(*)式得2b=9-5a,c=4a.
又△=(2b)2-4ac=9(a-1)(a-9)
a>0
△=9(a-1)(a-9)≤0
得a∈[1,9]
即a的取值范圍[1,9]
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性、極值點(diǎn)與其導(dǎo)函數(shù)之間的關(guān)系.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、文科數(shù)學(xué)(北京卷) 題型:044

設(shè)定函數(shù)f(x)=x3+bx2+cx+d(a>0),且方程(x)-9x=0的兩個(gè)根分別為1,4.

(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點(diǎn)時(shí),求f(x)的解析式;

(Ⅱ)若f(x)在(-∞,+∞)無極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省保定市定興中學(xué)高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)定函數(shù),且方程f′(x)-9x=0的兩個(gè)根分別為1,4.
(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點(diǎn)時(shí),求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)無極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)宏志中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)定函數(shù),且方程f′(x)-9x=0的兩個(gè)根分別為1,4.
(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點(diǎn)時(shí),求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)無極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京 題型:解答題

設(shè)定函數(shù)f(x)=
a
3
x3+bx2+cx+d(a>0)
,且方程f′(x)-9x=0的兩個(gè)根分別為1,4.
(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點(diǎn)時(shí),求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)無極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案