【題目】從某小區(qū)抽取100戶居民進行月用電量調查,發(fā)現(xiàn)其用電量都在50度至350度之間,頻率分布直方圖如圖所示.

(1)根據(jù)直方圖求x的值,并估計該小區(qū)100戶居民的月均用電量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)從該小區(qū)已抽取的100戶居民中,隨機抽取月用電量超過250度的3戶,參加節(jié)約用電知識普及講座,其中恰有ξ戶月用電量超過300度,求ξ的分布列及期望.

【答案】
(1)解:由已知得50×(0.0012+0.0024×2+0.0036+x+0.0060)=1,

解得x=0.0044

設該小區(qū)100戶居民的月均用電量為S,

則S=0.0024×50×75+0.0036×50×125+0.0060×50×175+0.0044×50×225+0.0024×50×275+0.0012×50×325=9+22.5+52.5+49.5+33+19.5=186


(2)該小區(qū)用電量在(250,300]的用戶數(shù)為0.0024×50×100=12,

用電量在(300,350]的用戶數(shù)為0.0012×50×100=6,

由已知得ξ的可能取值為0,1,2,3,

ξ=0時, ,

ξ=1時,

ξ=2時, ,

ξ=3時,

所以ξ的分布列是

ξ

0

1

2

3

p

E(ξ)=0×p(ξ=0)+1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)=1.


【解析】(1)由已知得50×(0.0012+0.0024×2+0.0036+x+0.0060)=1,由此能求出x,由頻率分布直方圖能求出該小區(qū)100戶居民的月均用電量.(2)由已知得ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列及期望.
【考點精析】掌握頻率分布直方圖和離散型隨機變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點與兩個定點的距離之比為.

(1)求點的坐標所滿足的關系式;

(2)求面積的最大值;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點.

1)證明:MN∥平面C1DE;

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20160413山東濟南非法經(jīng)營疫苗系列案件披露后,引發(fā)社會高度關注,引起公眾、受種者和兒童家長對涉案疫苗安全性和有效性的擔憂。為采取后續(xù)處置措施提供依據(jù),保障受種者的健康,盡快恢復公眾接種疫苗的信心,科學嚴謹?shù)胤治錾姘敢呙缃臃N給受種者帶來的安全性風險和是否有效,對某疫苗預防疾病的效果,進行動物實驗,得到下面表格中的統(tǒng)計數(shù)據(jù):現(xiàn)從所有試驗動物中任取一只,取到注射疫苗動物的概率為

未發(fā)病

發(fā)病

合計

未注射疫苗

注射疫苗

合計

(1)求列聯(lián)表中的數(shù)據(jù)的值;

(2)繪制發(fā)病率的條形統(tǒng)計圖,并判斷疫苗是否有效?

(3)能夠有多大把握認為疫苗有效?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關系式;

(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.

(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,證明: 為偶函數(shù);

(2)若上單調遞增,求實數(shù)的取值范圍;

(3)若,求實數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)相關規(guī)定,24小時內的降水量為日降水量(單位:mm),不同的日降水量對應的降水強度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水強度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監(jiān)測數(shù)據(jù)中,隨機抽取10天的數(shù)據(jù)作為樣本,具體數(shù)據(jù)如下:
16 12 23 65 24 37 39 21 36 68
(1)請完成以如表示這組數(shù)據(jù)的莖葉圖;

(2)從樣本中降水強度為大雨以上(含大雨)天氣的5天中隨機選取2天,求恰有1天是暴雨天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程和圓的直角坐標方程;

(2)若點是直線上的動點,過作直線與圓相切,切點分別為、,若使四邊形的面積最小,求此時點的坐標.

查看答案和解析>>

同步練習冊答案