【題目】某品牌汽車4S店,對該品牌旗下的A型、B型、C型汽車進行維修保養(yǎng),每輛車一年內(nèi)需要維修的人工費用為200元,汽車4S店記錄了該品牌三種類型汽車各100輛到店維修的情況,整理得下表:

車型

A型

B型

C型

頻數(shù)

20

40

40

假設(shè)該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機抽取10輛進行問卷回訪.
(1)從參加問卷到訪的10輛汽車中隨機抽取兩輛,求這兩輛汽車來自同一類型的概率;
(2)某公司一次性購買該品牌A、B、C型汽車各一輛,記ξ表示這三輛車的一年維修人工費用總和,求ξ的分布列及數(shù)學(xué)期望(各型汽車維修的概率視為其需要維修的概率);
(3)經(jīng)調(diào)查,該品牌A型汽車的價格與每月的銷售量之間有如下關(guān)系:

價格(萬元)

25

23.5

22

20.5

銷售量(輛)

30

33

36

39

已知A型汽車的購買量y與價格x符合如下線性回歸方程: = x+80,若A型汽車價格降到19萬元,請你預(yù)測月銷售量大約是多少?

【答案】
(1)解:100輛該品牌三種類型汽車中隨機抽取10輛進行問卷回訪,A、B、C型汽車各2,4,4輛.

從參加問卷到訪的10輛汽車中隨機抽取兩輛,有 =45種方法,這兩輛汽車來自同一類型的概率為 =


(2)解:ξ的取值為0,200,400,600,

P(ξ=0)=0.8×0.6×0.6=0.288,P(ξ=200)=0.2×0.6×0.6+0.8×0.4×0.6+0.8×0.6×0.4=0.456,

P(ξ=400)=0.2×0.4×0.6+0.2×0.6×0.4+0.8×0.4×0.4=0.224,

P(ξ=600)=0.2×0.4×0.4=0.032,

∴ξ的分布列

ξ

0

200

400

600

P

0.288

0.456

0.224

0.032

數(shù)學(xué)期望Eξ=0×0.288+200×0.456+400×0.224+600×0.032=200


(3)解: = (25+23.5+22+20.5)=22.75, = (30+33+36+39)=35.25,

= x+80,

∴35.25= ×22.75+80,

= ,

x=19,y=19× +80≈117


【解析】(1)100輛該品牌三種類型汽車中隨機抽取10輛進行問卷回訪,A、B、C型汽車各2,4,4輛.從參加問卷到訪的10輛汽車中隨機抽取兩輛,有 =45種方法,即可求這兩輛汽車來自同一類型的概率;(2)ξ的取值為0,200,400,600,求出相應(yīng)的概率,即可求ξ的分布列及數(shù)學(xué)期望;(3)求出b,即可預(yù)測月銷售量.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計值(四舍五入保留整數(shù));

(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至多抽到一名“25周歲以下組”工人的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一般地,對于直線及直線外一點,我們有點到直線的距離公式為:

(1)證明上述點到直線的距離公式

(2)設(shè)直線,試用上述公式求坐標(biāo)原點到直線距離的最大值及取最大值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個頂點均在半徑為2的球面上,且滿足,,則三棱錐的側(cè)面積的最大值為(

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),已知四邊形ABCD,CD⊥AD,∠CBD= ,AD=5,AB=7,且cos2∠ADB+3cos∠ADB=1,則BC的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的參數(shù)方程是 (θ為參數(shù)),曲線C與l的交點的極坐標(biāo)為(2, )和(2, ),
(1)求直線l的普通方程;
(2)設(shè)P點為曲線C上的任意一點,求P點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為,公差,且,成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設(shè)是首項為1,公比為的等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3.
(1)若a=1,解不等式f(x)≤5;
(2)若函數(shù)f(x)有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4;坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系,曲線C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為(2, ).
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案