(2013•淄博一模)若0<θ≤
π
3
,則sinθ+
3
cosθ
的取值范圍是
[
3
,2]
[
3
,2]
分析:所求式子提取2表示后,利用特殊角的三角函數(shù)值及兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由θ的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)求出正弦函數(shù)的值域,即可確定出所求式子的范圍.
解答:解:sinθ+
3
cosθ=2(
1
2
sinθ+
3
2
cosθ)=2sin(θ+
π
3
),
∵0<θ≤
π
3
,∴
π
3
<θ+
π
3
3
,
3
2
≤sin(θ+
π
3
)≤1,即
3
≤2sin(θ+
π
3
)≤2,
則當(dāng)0<θ≤
π
3
時(shí),sinθ+
3
cosθ的取值范圍為[
3
,2].
故答案為:[
3
,2]
點(diǎn)評(píng):此題考查了兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)已知集合M={x|x2-5x<0},N={x|p<x<6},若M∩N={|2<x<q},則p+q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)已知P是圓x2+y2=1上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x+y-2
2
=0
的距離的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)某程序框圖如圖所示,該程序運(yùn)行后,輸出的x值為31,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)設(shè)定義在R上的奇函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(1-t),且x∈[0,
1
2
]
時(shí),f(x)=-x2,則f(3)+f(-
3
2
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)已知向量
p
m
=(sin(A-B),sin(
π
2
-A)),
p
n
=(1,2sinB),
p
m
p
n
=-sin2C,其中A,B,C分別為△ABC的三邊a,b,c所對(duì)的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=2sinC,且S△ABC=
3
,求邊c的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案