已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2c,右頂點(diǎn)為A,拋物線x2=2py(p>0)的焦點(diǎn)為F,若雙曲線截拋物線的準(zhǔn)線所得線段長為2c,且|FA|=c,則雙曲線的漸近線方程為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的右頂點(diǎn)A(a,0),拋物線x2=2py(p>0)的焦點(diǎn)及準(zhǔn)線方程,根據(jù)已知條件得出a2+
p2
4
=c2
a
b
4b2+p 2
=2c②
,求出a=b,得雙曲線的漸近線方程為:y=±x.
解答: 解:∵右頂點(diǎn)為A,
∴A(a,0),
∵F為拋物線x2=2py(p>0)的焦點(diǎn),
F(0,
p
2
)
,
∵|FA|=c,
a2+
p2
4
=c2

拋物線的準(zhǔn)線方程為y=-
p
2

x2
a2
-
y2
b2
=1
y=-
p
2
x=±
a
2b
4b2+p 2
,
a
b
4b2+p 2
=2c②

c2=2a2,
∵c2=a2+b2,
∴a=b,
∴雙曲線的漸近線方程為:y=±x,
故答案為:y=±x.
點(diǎn)評:熟練掌握圓錐曲線的圖象與性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二項(xiàng)式(2x+
a
x
7的展開式中
1
x3
的系數(shù)是84,則實(shí)數(shù)a=( 。
A、2
B、
54
C、1
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+
x-1
x+1
,其中a為常數(shù).
(Ⅰ)若a=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-1|+|x+2|≥5的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a-c=
6
6
b,sinB=
6
sinC,
(Ⅰ)求cosA的值;
(Ⅱ)求cos(2A-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1)時,f(x)=
-4x2+2 , -1≤x<0
x,               0≤x<1
,則f(
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時氣球的高是46m,則河流的寬度BC約等于
 
m.(用四舍五入法將結(jié)果精確到個位.參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,
3
≈1.73)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)實(shí)數(shù)x,y滿足
x+2y-4≤0
x-y-1≤0
x≥1
時,1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入的x,t均為2,則輸出的S=( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊答案