設(shè)橢圓C:=1(a>b>0)的離心率e=,右焦點到直線=1的距離d=,O為坐標(biāo)原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明點O到直線AB的距離為定值,并求弦AB長度的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試(新課標(biāo)Ⅱ卷)文科數(shù)學(xué)文科數(shù)學(xué) 題型:013

設(shè)橢圓C:=1(a>b>0)的左、右焦點分別為F1、F2,P是C上的點PF2⊥F1F2,∠PF1F2=30.,則C的離心率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省泉州一中2012屆高三5月模擬考試數(shù)學(xué)理科試題 題型:044

設(shè)橢圓C:=1(a>b>0),其長軸是短軸的兩倍,以某短軸頂點和長軸頂點為端點

的線段作為直徑的圓的周長為π.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與橢圓相交于A,B兩點,設(shè)直線OA,l,OB的斜率分別為k1,k,k2,(其中k>0).△OAB的面積為S,以O(shè)A,OB為直徑的圓的面積分別為S1,S2.若k1,k,k2恰好構(gòu)成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)2012屆高三下學(xué)期二輪復(fù)習(xí)綜合驗收(5)數(shù)學(xué)理科試題 題型:044

設(shè)橢圓C:=1(a>b>0)的離心率e=,右焦點到直線=1的距離d=,O為坐標(biāo)原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:+=1(ab>0)的左焦點為F,上頂點為A,過點AAF垂直的直線分別交橢圓Cx軸正半軸于點PQ,且((AP=((PQ.

(1)求橢圓C的離心率;

(2)若過A、Q、F三點的圓恰好與直線lxy+3=0相切,

求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案