【題目】已知拋物線:()與橢圓:相交所得的弦長為
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,是上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且為定值()時,證明:直線恒過定點,并求出該定點的坐標.
【答案】(Ⅰ);(Ⅱ)直線恒過定點.
【解析】
試題分析:(Ⅰ)設拋物線與橢圓交于,兩點,由對稱性得,代入得的值;(Ⅱ)欲求證直線恒過定點,可先根據(jù)條件求出帶參數(shù)的直線的方程,再結合為定值即可證得.
試題解析:(Ⅰ)設拋物線與橢圓交于,兩點.
由橢圓的對稱性可知,,,
將點代入拋物線中,得,
再將點代入橢圓中,得,解得.
故拋物線的標準方程為.
(Ⅱ)設點,,
由題意得(否則,不滿足),且,,
設直線,的方程分別為,,
聯(lián)立,解得,,聯(lián)立,解得,;
則由兩點式得,直線的方程為.
化簡得.①
因為,由,得,得,②
將②代入①,化簡得,得.
得,
得,
得,
即.
令,不管取何值,都有.
所以直線恒過定點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)若對任意,都有成立,求的值值范圍;
(2)若先將的圖象上每個點縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,然后再向左平移個單位得到函數(shù)的圖象,求函數(shù)在區(qū)間內的所有零點之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我校名教師參加我縣“六城”同創(chuàng)“干部職工進網(wǎng)絡,服務群眾進社區(qū)”活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:
上表是年齡的頻數(shù)分布表.
(1)求正整數(shù)的值;
(2)根據(jù)頻率分布直方圖估計我校這名教師年齡的中位數(shù)和平均數(shù);
(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有一條光線從射出,并且經(jīng)軸上一點反射.
(1)求入射光線和反射光線所在的直線方程(分別記為);
(2)設動直線,當點到的距離最大時,求所圍成的三角形的內切圓(即:圓心在三角形內,并且與三角形的三邊相切的圓)的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值;
(2)設,討論函數(shù)的單調性;
(3)若斜率為的直線與曲線交于,兩點,其中,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:()與橢圓:相交所得的弦長為.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,是上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且為定值()時,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,由三棱柱和四棱錐構成的幾何體中, 平面, , , ,平面平面.
(Ⅰ)求證: ;
(Ⅱ)若為棱的中點,求證: 平面;
(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且, .
(1)求數(shù)列和的通項公式;
(2)設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務活動。
(1)求從該班男、女同學中各抽取的人數(shù);
(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com