分析 (I)曲線C1的極坐標方程為$ρcos({θ-\frac{π}{3}})=1$,展開為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=1,利用互化公式可得直角坐標方程.
(II)由方程:x+$\sqrt{3}$y-2=0,可得∴P(2,0).M(cosα,-2+sinα),N(-sinα,-2+cosα).利用兩點之間距離公式、同角三角函數(shù)基本關(guān)系式及其三角函數(shù)的單調(diào)性即可得出.
解答 解:(I)曲線C1的極坐標方程為$ρcos({θ-\frac{π}{3}})=1$,
展開為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=1,
化為直角坐標方程:x+$\sqrt{3}$y-2=0.
(II)由方程:x+$\sqrt{3}$y-2=0,令y=0,解得x=2.
∴P(2,0).M(cosα,-2+sinα),N(-sinα,-2+cosα).
∴|PM|2+|PN|2=(cosα-2)2+(sinα-2)2+(sinα+2)2+(cosα-2)2=18-8cosα∈[10,26].
點評 本題考查了極坐標方程化為直角坐標方程、兩點之間距離公式、同角三角函數(shù)基本關(guān)系式及其三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,0] | B. | [-1,0] | C. | [-1,-2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x<4} | B. | {x|x≤2或x≥4} | C. | {x|-2≤x≤-1} | D. | {x|-1≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,4} | B. | {3,4} | C. | {1,2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻數(shù) | 40 | 20 | a | 10 | b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20 | B. | 18 | C. | 16 | D. | 14 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com