f(x)和g(x)都是定義在集合M上的函數(shù),對(duì)于任意的x∈M,都有f(g(x))=g(f(x))成立,稱函數(shù)f(x)與g(x)在M上互為“H函數(shù)”.
(1)若函數(shù)f(x)=ax+b,g(x)=mx+n,f(x)與g(x)互為“H函數(shù)”,證明:f(n)=g(b)
(2)若集合M=[-2,2],函數(shù)f(x)=x2,g(x)=cosx,判斷函數(shù)f(x)與g(x)在M上是否互為“H函數(shù)”,并說(shuō)明理由.
(3)函數(shù)f(x)=ax(a>0且a≠1),g(x)=x+1在集合M上互為“H函數(shù)”,求a的取值范圍及集合M.
【答案】分析:(1)由f(x)=ax+b,g(x)=mx+n,f(x)與g(x)互為“H函數(shù)”,知f(g(x))=g(f(x))成立.即ag(x)+b=mf(x)+n恒成立,由此能夠證明f(n)=g(b).
(2)假設(shè)函數(shù)f(x)與g(x)互為“H函數(shù)”,則對(duì)于任意的x∈M,f(g(x))=g(f(x))恒成立.即cosx2=cos2x,對(duì)于任意x∈[-2,2]恒成立,由此能推導(dǎo)出在集合M上,函數(shù)f(x)與g(x)不是互為“H函數(shù)”.
(3)由題意得,ax+1=ax+1(a>0且a≠1),變形得ax(a-1)=1,由于a>0且a≠1,由此能求出a的取值范圍及集合M.
解答:(1)證明:∵f(x)=ax+b,
g(x)=mx+n,f(x)與g(x)互為“H函數(shù)”,
∴對(duì)于?x∈R,f(g(x))=g(f(x))成立.
即ag(x)+b=mf(x)+n恒成立…(2分)
∴max+an+b=amx+mb+n,…(2分)
∴an+b=mb+n,
∴f(n)=g(b).…(1分)
(2)解:假設(shè)函數(shù)f(x)與g(x)互為“H函數(shù)”,
則對(duì)于任意的x∈Mf(g(x))=g(f(x))恒成立.
即cosx2=cos2x,對(duì)于任意x∈[-2,2]恒成立…(2分).
當(dāng)x=0時(shí),cos0=cos0=1.
不妨取x=1,則cos12=cos1,所以cos1≠cos21…(2分)
所以假設(shè)不成立,在集合M上,
函數(shù)f(x)與g(x)不是互為“H函數(shù)”…(1分).
(3)解:由題意得,ax+1=ax+1(a>0且a≠1)…(2分)
變形得,ax(a-1)=1,
由于a>0且a≠1,
因?yàn)閍x>0,所以,即a>1…(2分)
此時(shí)x=-loga(a-1),
集合M={x|x=-loga(a-1),a>1}…(2分)
點(diǎn)評(píng):本題考查函數(shù)值相等的證明,考查兩個(gè)函數(shù)是否互為“H函數(shù)”的判斷,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、若函數(shù)f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在區(qū)間[m,n]上的兩個(gè)函數(shù)f(x)和g(x),如果對(duì)任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,則稱函數(shù)f(x)與g(x)在[m,n]上是“友好”的,否則稱“不友好”的.現(xiàn)在有兩個(gè)函數(shù)f(x)=loga(x-3a)與g(x)=loga
1x-a
(a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f(x)與g(x)在區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論函數(shù)f(x)與g(x)在區(qū)間[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng)二模)對(duì)于具有相同定義域D的函數(shù)f(x)和g(x),若對(duì)任意的x∈D,都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在D上是“密切函數(shù)”.給出定義域均為D={x|1≤x≤3}的四組函數(shù)如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函數(shù)f(x)印g(x)在D上為“密切函數(shù)”的是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案