已知數(shù)列{an}中,a1=
3
4
,an+1=
1
2-an
(n∈N*).
(Ⅰ)求證:數(shù)列{
1
an-1
}是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)設(shè)bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1,試比較an與8Sn的大小.
考點:數(shù)列與不等式的綜合,等差關(guān)系的確定,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(I)利用已知遞推式,只要證明
1
an+1-1
-
1
an-1
是一個常數(shù)即可;
(II)利用“裂項求和”和“作差法”即可得出.
解答: 解:(Ⅰ)∵an+1=
1
2-an
(n∈N*),
1
an+1-1
-
1
an-1
=
1
1
2-an
-1
-
1
an-1
=
2-an
an-1
-
1
an-1
=-1,
1
a1-1
=
1
3
4
-1
=-4
,
∴數(shù)列{
1
an-1
}是首項為-4,公差為-1的等差數(shù)列.
1
an-1
=-4-(n-1)=-n-3
,化為an=
n+2
n+3
(n∈N*).
(Ⅱ)∵bn+an=l(n∈N*),
∴bn=1-an=
1
n+3

bnbn+1=
1
n+3
-
1
n+4
,
∴S=b1b2+b2b3+…+bnbn+1=(
1
4
-
1
5
)+(
1
5
-
1
6
)
+…+(
1
n+3
-
1
n+4
)
=
1
4
-
1
n+4
=
n
4(n+4)

從而an-8Sn=
n+2
n+3
-
2n
n+4
=
-n2+8
(n+3)(n+4)
,
∴當(dāng)n≤2時,an>8Sn;
當(dāng)n≥3時,an<8Sn
點評:本題考查了遞推式的意義、等差數(shù)列的定義及其通項公式、“裂項求和”和“作差法”等基礎(chǔ)知識與基本技能方法,考查了推理能力和計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線m不平行于平面α,且m?α,則下列結(jié)論成立的是(  )
A、α內(nèi)的所有直線與m異面
B、α內(nèi)的直線與m都相交
C、α內(nèi)存在唯一的直線與m平行
D、α內(nèi)不存在與m平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某園藝師培育了兩種珍稀樹苗A與B,株數(shù)分別為8與12,現(xiàn)將這20株樹苗的高度編寫成如圖所示莖葉圖(單位:cm).若樹高在175cm以上(包括175cm)定義為“生長良好”,樹高在175cm以下(不包括175cm)定義為“非生長良好”,且只有“B生長良好”的才可以出售.
(1)對于這20株樹苗,如果用分層抽樣的方法從“生長良好”和“非生長良好”中共抽取5株,再從這5株中任選2株,那么至少有一株“生長良好”的概率是多少?
(2)若從所有“生長良好”中選2株,求所選中的樹苗都能出售的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
1-x
1+x
(a>0且a≠1)的圖象經(jīng)過點P(-
4
5
,2).
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)g(x)=
1-x
1+x
,用函數(shù)單調(diào)性的定義證明:函數(shù)y=g(x)在區(qū)間(-1,1)上單調(diào)遞減;
(3)解不等式:f(t2-2t-2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點,求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE; 
(2)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
.求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年2月21日《中共中央關(guān)于全面深化改革若干重大問題的決定》明確:堅持計劃生育的基本國策,啟動實施一方是獨生子女的夫婦可生育兩個孩子的政策.為了解某地區(qū)城鎮(zhèn)居民和農(nóng)村居民對“單獨兩孩”的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否贊成“單獨兩孩”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:
態(tài)度
調(diào)查人群
贊成 反對 無所謂
農(nóng)村居民 2100人 120人 y人
城鎮(zhèn)居民 600人 x人 z人
已知在全體樣本中隨機抽取1人,抽到持“反對”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“反對”態(tài)度的人中,用分層抽樣的方法抽取6人,按每組3人分成兩組進行深入交流,求第一組中農(nóng)村居民人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,b=1,c=
3
,∠C=
3
,則①a=
 
;②∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足:①f(1)=1,②?x∈R,f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,則f(2013)=
 

查看答案和解析>>

同步練習(xí)冊答案